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In this issue of Neuron, Konovalov and Krajbich (2018) argue that a Bayesian inference is employed when
learning new sequences and identify distinct brain networks that track the uncertainty of both the current
state and the underlying pattern structure.
‘‘You look at where you’re going

and where you are and it never

makes sense, but then you look

back at where you’ve been and a

pattern seems to emerge.’’

Robert Pirsig, Zen and the Art of

Motorcycle Maintenance

Our lives are shaped by rituals, little se-

quences of states and actions that give

rhythm to our days. Preparing breakfast,

driving to work, lunch with colleagues,

getting groceries, and preparing din-

ner—a substantial amount of our

behavior is driven by invariant scripts

for specific situations. Here’s the most

treasured ritual of my morning: turning

on the espresso machine, grinding the

beans, smelling that scent of fresh cof-

fee, tamping the grounds and adjusting

the portafilter in the brew head, pulling

the shot, seeing the crema rise in the

cup, and finally tasting the first sip. I al-

ways repeat this sequence in the same

way, and for me there is no better way

to start the day. However, this ritual is

also part of several longer sequences:

preparing a latte, a cappuccino, or a

flat white all include pulling a shot of

espresso. For an outside observer, it is

only in the course of the sequence that
it becomes clear what this final product

will be.

In the current issue of Neuron, Konova-

lov and Krajbich (2018) tackle the ques-

tion of how our brains learn to detect

deterministic sequences like the one

above in the stream of sensory inputs.

To this aim and in contrast to the classic

serial reaction time task, which is

commonly used to investigate implicit

sequence learning (Nissen and Bullemer,

1987), they employed a novel pattern

detection task where subjects were in-

structed to predict upcoming stimuli in a

stream of images. These images were

configured as patterns of different lengths

or no pattern (Figure 1B). A common

finding in probabilistic (e.g., Bornstein

and Daw, 2012) and deterministic

sequence learning (e.g., Rose et al.,

2010) is a sharp drop in reaction time

(RT) that a participant needs to detect

the next stimulus, indicating that the

sequence has been learned. In the current

study, RT drops serve as an indicator that

a pattern of a certain length has been de-

tected. In addition, each image was

shown as an animation, starting with a

scrambled version of all images from

which the current image gradually

emerges. This clever manipulation pro-
longed reaction times, leading to better

detection of RT drops in each condition

and hence to more meaningful and

interpretable behavioral data. Indeed, Ko-

novalov and Krajbich (2018) observed sig-

nificant RT drops when they compared

pattern against no pattern, and the effect

also depended on the pattern lengths,

as the RT drop occurred earlier for shorter

sequences.

What accounts for this effect? One of

the seminal contributions of their work is

the hierarchical Bayesian pattern learning

model, whereby individuals update their

beliefs about both the structure (i.e.,

pattern length) and the state (i.e., up-

coming image). The structure-level belief

informs the state-level belief, guiding par-

ticipants’ prediction of the next image

(face, F; house, H; or landscape, L), which

differs for patterns of different lengths

(Figure 1A). For example, if the observed

image sequence F, L, F was part of

a length-2 sequence, then L would be

the prediction for the next image; if it

was part of a length-3 sequence, then

F would be the next predicted stimulus

(Figure 1B). Depending on the structure-

level belief (is it a 2- or 3-length pattern?),

the Bayesian learner would compute

different state-level beliefs (is next image
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Figure 1. Hierarchical Bayesian Belief Updating in Deterministic Sequence Learning
(A) Hierarchical Bayesian pattern learning model. Structure-level beliefs (about the pattern length) are informing state-level beliefs (about the identity of the next
image), which give rise to predictions about the next stimulus in the sequence. Sensory evidence then updates the beliefs at both levels.
(B) Simulated data and possible corresponding exemplar sequences. The top row shows a simulated sequence of pattern length 3 (F, face; L, landscape;
H, house). Black and gray letters represent observed and yet-to-be-seen images, respectively. The rows below display corresponding exemplar sequences for
each possible pattern length. After observing the first three images (F, L, F), all pattern lengths are still possible. Certain exemplar sequences become less likely
with more incoming evidence (e.g., on trial 4 [F, L, F, F], pattern length 2 [F, L, F, L] becomes unlikely).
(C) Belief updates. The top row shows the structure-level belief for the simulated data in (B) for the first 7 trials. Initially, the structure belief is distributed with high
uncertainty, but as the evidence accumulates, the specific belief in pattern length 3 is strengthened, while it decreases for all others. The next row shows the
corresponding state-level beliefs (summed across all structure patterns), which also become increasingly specific for a pattern length 3.
(D) Entropy and the brain networks. As the high uncertainty in the beginning gets resolved by accumulating evidence, both structure and state entropy derived
from (C) declines, which correlates with activation in specific and distinct brain networks.

Neuron

Previews
F or L?). Conceptually, this hierarchical

Bayesian model is similar to model-based

learning (see Dolan and Dayan, 2013, for a

review), where the structure beliefs repre-

sent the model of the task, which governs

the computation of expected values for

each state (i.e., image).

The model assumes a common prior

belief distribution for the entire structure

space (i.e., how likely each pattern length

is), and as more information is gathered,

this belief is updated and able to predict

whether a structure exists, and if so,

which pattern length the sequence has.

For example, at the seventh trial (having

observed six images in a pattern length-3

sequence F, L, F, F, L, F, previously) a

successful Bayesian learner would assign
a probability of 0 to pattern lengths 2 and

4 and only update non-zero beliefs about

the other patterns (Figure 1C, top). Condi-

tional on this structure-level belief, the

Bayesian learner then computes the

probability of observing each image on

the next trial (i.e., the state-level belief;

Figure 1C, bottom). Following previous

literature, Konovalov and Krajbich (2018)

regressed participants’ RT on Shannon

entropy (e.g., Bornstein and Daw, 2012)

and Shannon surprise (e.g., Harrison

et al., 2006) derived from both levels of

beliefs. Entropy is a measure of global

uncertainty about a belief distribution,

which is maximal when the beliefs about

the pattern lengths and images are

equally likely (Figure 1C, first trial). As
some of pattern lengths become more

and more unlikely as the sequence un-

folds, the entropy declines (Figure 1D).

Shannon surprise, on the other hand,

measures how much an observed stim-

ulus in the sequence violates the state-

level beliefs (Figure 1A) and is conceptu-

ally similar to a prediction error computed

during reinforcement learning. Konovalov

and Krajbich (2018) showed that RTs on

their task (including their drops) were

well explained by the state-level entropy

and surprise, but not by the structure-

level entropy. This finding is in itself a bit

surprising but can probably be explained

by the high correlation between the two

levels of entropy: structure-level uncer-

tainty about the pattern length will also
Neuron 98, June 27, 2018 1067
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result in state-level uncertainty about

which image comes next (Figure 1D).

Having the computational model at

hand, the next question is straightfor-

ward: how are the two levels of en-

tropy implemented in the brain? Using

model-based functional neuroimaging,

Konovalov and Krajbich (2018) first

identified a frontoparietal network,

including the intraparietal sulcus (IPS)

and bilateral lateral prefrontal cortex

(lPFC), that encoded the state-level en-

tropy (Figure 1D, bottom). This largely

replicates the previous findings on the

neural signatures of state prediction error

(cf. IPS; Gl€ascher et al., 2010) and the

arbitration between model-free learning

and model-based learning (cf. lPFC;

Lee et al., 2014). Notably, activations in

both the IPS and the lPFC monotonically

increased as the pattern became more

complex, demonstrating that the fronto-

parietal network is not only tied to

state-level uncertainty but also reflects

the pattern length.

Furthermore, Konovalov and Krajbich

(2018) examined the neural correlates of

the structure-level belief updating derived

from their hierarchical Bayesian model,

which has rarely been studied in

sequence learning. They show a distinct

and separate network of brain regions

tracking structure-level entropy (and its

inverse) including, but not limited to, the

dorsal striatum (dStr), left inferior frontal

gyrus (IFG), and ventromedial prefrontal

cortex (vmPFC; Figure 1D, top). The latter

also tracked the different pattern lengths

(including the no pattern condition), sug-

gesting that the role of this area goes

beyond simple reward coding. Conceptu-

ally, this demonstrates the richness of

neuroimaging data and its capacity to

uncover subtle but meaningful differ-

ences in model-based signals that remain

unnoticed in the single-dimensionality

of behavioral data (Wilkinson and Halli-

gan, 2004).
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Taken together, this study provides a

novel perspective on the hierarchical na-

ture of deterministic sequence learning

(e.g., making an espresso and turning

it into a latte or a flat white), which is

no less important to our daily life than

detecting transition strength in stochas-

tic sequences. The proposed Bayesian

pattern learning model tracks both the

current state and the underlying struc-

ture of the sequence, by integrating

the prior beliefs about all possible struc-

tures with the history of the observed

states. Intriguingly, the computational

signals of both levels belief entropy are

encoded in two distinct networks of

brain regions, replicating findings on

model-based planning, valuation, and

expectancy violations. This study also

demonstrates the neural evidence for

an additional layer of structure-level

reasoning in sequence learning and sup-

ports the general hypothesis that our

brains employ Bayesian inference in

complex structure learning (Gershman

and Niv, 2010).

It is worth noting that although the en-

tropy accounts for the behavioral effects

captured by RT, it does not reflect the

exact computations when updating be-

liefs, hence weakening a precise conclu-

sion of the computational function of

each brain region. In addition, detailed

connectivity analysis in future studies can

unravel the functional interactions of the

nodes of each network, thus substantiat-

ing how other decision-related variables

(e.g., action probabilities) are computed

in the brain. Furthermore, in the real world,

the pattern space can be seemingly large

and even reach infinity; thus, it is worth

investigating how initial beliefs are formu-

lated and how individuals effectively

downscale irrelevant dimensions and

represent solely the appropriate informa-

tion. Attentional selection could be a

key process in accomplishing this goal,

and incorporating it into the hierarchi-
cal Bayesian pattern learning model may

provide invaluable insight into more

complex structure learning, for both

deterministic sequences and stochastic

sequences.

In sum, Konovalov and Krajbich (2018)

provide an elegant Bayesian infer-

ence account of deterministic sequence

learning, shedding light on the potential

mechanisms of how our brains uncover

meaningful structures in a complex envi-

ronment using a limited amount of

evidence.
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