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Abstract Counterfactual information processing refers to the
consideration of events that did not occur in comparison to
those actually experienced, in order to determine optimal ac-
tions, and can be formulated as computational learning sig-
nals, referred to as fictive prediction errors. Decision making
and the neural circuitry for counterfactual processing are al-
tered in healthy elderly adults. This experiment investigated
age differences in neural systems for decision making with
knowledge of counterfactual outcomes. Two groups of
healthy adult participants, young (N = 30; ages 19–30 years)
and elderly (N = 19; ages 65–80 years), were scanned with
fMRI during 240 trials of a strategic sequential investment
task in which a particular strategy of differentially weighting
counterfactual gains and losses during valuation is associated
with more optimal performance. Elderly participants earned
significantly less than young adults, differently weighted
counterfactual consequences and exploited task knowledge,
and exhibited altered activity in a fronto-striatal circuit while

making choices, compared to young adults. The degree to
which task knowledge was exploited was positively correlated
with modulation of neural activity by expected value in the
vmPFC for young adults, but not in the elderly. These findings
demonstrate that elderly participants’ poor task performance
may be related to different counterfactual processing.
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Counterfactual information processing refers to the consider-
ation of events that did not occur in comparison to those ac-
tually experienced in order to determine optimal actions.
Counterfactual information processing is a ubiquitous compo-
nent of cognition (Byrne, 2002) and an important source of
bias during decision making (Coricelli & Rustichini, 2010;
Lohrenz, McCabe, Camerer, & Montague, 2007; Montague,
King-Cassas, & Cohen, 2006). It can be conceptualized as an
episodic memory function (Barbey, Kruger, & Grafman,
2009; Byrne, 2002; De Brigard, Addis, Ford, Schacter, &
Giovanello, 2013; Horhota, Mienaltowski, & Blanchard-
Fields, 2012), or formulated as fictive prediction errors
(FPE) in computational models of reward-based learning
and decision making (Lohrenz et al., 2007; Montague et al.,
2006; Tobia et al., 2014). An FPE is similar to a standard
reward prediction error in that it is a quantity that adjusts
future expected reward values but differs in that it is computed
for actions that were not selected with rewards that were
missed. Thus, in contrast to standard reward prediction errors,
FPEs allow the acquisition of expected values even for non-
selected actions. It has been shown that young adults learn to
predict rewards more quickly and accurately when they incor-
porate counterfactual outcomes (Tobia et al., 2014), but
whether learning to predict rewards from counterfactual
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consequences is affected by age has not been investigated.
This experiment employed a model-based fMRI experimental
design to investigate whether age affects learning from coun-
terfactual outcomes, and if differences are reflected in the
underlying neural activity of a fronto-striatal circuit previously
associated with reward prediction, prediction error, and coun-
terfactual outcome processing (Brassen, Gamer, Peters, Gluth,
& Büchel, 2012; Büchel, Brassen, Yacubian, Kalisch, &
Sommer, 2011; Gläscher, Hampton, & O’Doherty, 2009;
Hare et al, 2008; Lohrenz et al, 2007; McClure et al., 2004;
O’Doherty, 2004; Tobia et al., 2014).

The model-based fMRI design operationally defines cer-
tain cognitive processes as a set of computational model pa-
rameters that vary trial by trial, which can then be used to
predict neural responses and localize the computational pa-
rameter to functional anatomy (Borst & Anderson, 2013;
Gläscher & O’Doherty, 2010). It has been successfully ap-
plied to decision-making research and uncovered a circuit
between the ventral striatum and ventromedial prefrontal cor-
tex (vmPFC), which together form a system for decision mak-
ing based on learned action-specific expected values (Hare
et al., 2008). From model-based fMRI research, the vmPFC
is postulated to process representations of expected value that
correspond to choice behavior (Gläscher et al., 2009), and the
striatum is postulated to process prediction errors that subse-
quently modify expected values (McClure et al, 2004;
O’Doherty, 2004), thereby adapting both brain and behavior
over time.

The fronto-striatal circuit of reward-based learning differs
between young and older adults (Grady, 2012; Hedden &
Gabrieli, 2004; Samanez-Larkin & Knutson, 2015). Older
adults are characterized by decreased gray matter and white
matter (WM) volume in voxel-based morphometry studies
(Brickman, Habeck, Zarahn, Flynn, & Stern, 2006) as well
as reduced measures ofWM integrity from diffusion weighted
imaging (Bennet, Madden, Vaidya, Howard, & Howard,
2010; Burzynska et al., 2010; Pfefferbaum, Adalsteinsson, &
Sullivan, 2005; Samanez-Larkin, Levens, Perry, Dougherty &
Knutson, 2012). In some cases, such as in multialternative
choice tasks, age-related changes in structure and functioning
of the fronto-striatal circuit are correlated with age-altered
decision making and performance (Grady, 2012; Hedden &
Gabrieli, 2004; Samanez-Larkin & Knutson, 2015) as well as
with different neural responsiveness to reward, reward predic-
tions, and reward prediction errors (Eppinger, Nystrom, &
Cohen, 2012; Eppinger, Walter, Heekeren, & Li, 2013;
Eppinger, Schuck, Nystrom, & Cohen, 2013; Samanez-
Larkin, Wagner & Knutson, 2011; Samanez-Larkin et al.,
2007; Samanez-Larkin, Kuhnen, Yoo, & Knutson, 2010;
Samanez-Larkin, Worthy, Mata, McClure, & Knutson, 2014;
Vink, Kleerekooper, van denWildenberg, & Kahn, 2015). But
the relation between age-related changes in structure and func-
tioning of the brain, and age-related differences in task

performance, is not always consistent. For example, one study
reported that older adults make more decision-making mis-
takes related to risk taking, which was attributable to greater
variability in the ventral striatum compared to young adults
(Samanez-Larkin et al., 2010). Another study of decision
making in healthy aging demonstrated that older adults show
reduced activity in the vmPFC during choice behavior, but
this age difference in neural activity was uncorrelated with
behavior, which was suboptimal (Eppinger, Heekeren & Li,
2015). This suggests that task performance irrespective of age
mediates the relationship between neural activity and decision
making based on reward predictions. Indeed, vmPFC activa-
tion is correlated with expected values, as it is in young adults,
for older adults who perform more optimally (Samanez-
Larkin et al., 2011). Moreover, advanced age is associated
with different decision-making strategies depending on the
task contingencies (Worthy&Maddox, 2012) and older adults
choice behavior is sometimes better explained by a win-stay-
lose-shift (WSLS) strategy that does not rely on a reward
prediction (Worthy & Maddox, 2012), as opposed to rein-
forcement learning strategies that do. This supports the notion
that although the elderly use different decision-making strate-
gies dependent on the task context, the vmPFC is important
for processing reward predictions to guide choice behavior in
some contexts. Taken together, these data suggest that older
age groups’ relatively poor decision-making task performance
is related to the decline in the fronto-striatal circuit of reward-
based learning, which results in altered subjective values to
guide choices (Eppinger et al., 2015; Samanez-Larkin
et al., 2011).

Reward predictions from the fronto-striatal circuit can be
affected by counterfactual information processing (Brassen,
Gamer, Peters, Gluth, & Büchel, 2012; Gu, Kirk, Lohrenz &
Montague, 2013; Lohrenz et al., 2007; Tobia et al., 2014), and
there is evidence that fictive prediction error (FPE) processing
overlaps reward prediction error processing in the ventral stri-
atum (Büchel et al., 2011; Tobia et al., 2014). Furthermore,
counterfactual information processing is supported by the me-
dial PFC and lesions to this region reduce the influence of
counterfactual comparison on decision making (Barbey
et al., 2009; Levens, Larsen, Bruss, Tranel, Bechara, &
Mellers, 2014; Sommer, Peters, Gläscher & Büchel, 2009).
As such, age-related differences in this brain system may lead
to altered counterfactual information processing and decision-
making strategies in older adults. Indeed, there is evidence that
healthy senior adults generate less episodic counterfactual sce-
narios during laboratory tasks (Horhota et al., 2012), and they
are less sensitive to counterfactual feedback about both
optimal and suboptimal behavior (Brassen et al., 2012).
Together, this suggests that knowledge from counterfac-
tual information may not be effectively incorporated in-
to reward predictions and subjective value by the elder-
ly during decision making.
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To answer this question, we investigated whether there are
age-related differences in decision making based on reward
predictions learned with counterfactual outcomes, and tested
if behavioral differences reflect age-altered functioning of the
underlying neural system using a model-based fMRI experi-
mental design. The strategic sequential investment task (SSIT;
Tobia et al., 2014) was designed to investigate the effects of
counterfactual consequences on action-specific value learning
within a modified Q-learning computational framework
(Watkins & Dayan, 1992) and a model-based fMRI experi-
mental design (Borst & Anderson, 2013; Gläscher &
O’Doherty, 2010). During the task, there is an event dedicated
to presenting counterfactual outcome information explicitly to
the participants, similar to the presentation of a reward from
which reward prediction errors can be computed. Thus, the
SSIT encourages participants to utilize counterfactual rewards
when learning to decide on the basis of reward predictions.
Previous research utilizing the SSIT in a model-based fMRI
experimental design (Tobia et al., 2014) demonstrated that
young adults who successfully exploited their knowledge
(i.e., accruedmore reward) weighted counterfactual gains less,
and weighted counterfactual losses more, than poorly
performing participants. The counterfactual Q-learning model
(FPEQ) parameters for expected value and prediction error
were correlated with neural activity in the vmPFC and stria-
tum, respectively, which is consistent with previous model-
based fMRI research (Gläscher et al., 2009; Hare et al.,
2008; McCLure et al., 2004; O’Doherty, 2004). These
findings show that the SSIT-FPEQ model-based fMRI para-
digm is sensitive to the effects of disparate counterfactual
valuation strategies, and it relates to the fronto-striatal circuit
previously implicated in reward prediction and prediction er-
ror processing. Thus, the SSIT-FPEQ model-based fMRI par-
adigm is well-suited to investigate age group differences in
learning from standard reward prediction errors and FPEs,
and neural activity of the fronto-striatal value learning system.

Method

Participants

Nineteen healthy elderly adults, ages 65 to 80 years, were
recruited from the community to participate in the experiment.
They were carefully screened by a clinical neuropsychologist
for mental health impairments using German tests for
dementia and fluid intelligence (CERAD and the
Leistungsprüfsystem Subtest 3 and 4). Initial screening
of participants was done with the German version of the
Consortium to Establish a Registry on Alzheimer’s
Disease–Neuropsychological Assessment Battery
(CERAD-NAB; Thalmann et al., 2000). The total score
was computed according to Chandler et al. (2005), and

only participants were included that scored above Chandler’s
cut-off score of 85.11 (our sample:M = 87.9, SD = 4.8, range
86–94). In addition, participants were screened for fluid intel-
ligence using Subtests 3 and 4 of the German intelligence test
BLeistungsprüfsystem^ with a cut-off of z < -1.0 (LPS;
Kreuzpointner, Lukesch, & Horn, 2013). The mean z scores
of our sample was for LPS 3 = 0.71 (SD = 0.9, range -0.7–2.1)
and for LPS 4, mean = 1.1, SD = 0.5, range 0.4–1.8).
Individuals meeting criteria for depression were excluded,
using the German version of the BDI (Hautzinger et al.,
1995), and a cutoff of 11 (our sample mean 3.3, SD = 2.7,
range 0–10). The final sample consisted of 19 elderly subjects
the mean age 66.4 (SD = 5.0, range 61–78, 13 male).

Data from 30 healthy young adult males (M = 23.7 years,
SD = 2.9, range 18–30 years) from a previous study (placebo
group of Tobia et al., 2014) were used for age comparisons in
this study. In the previous study we used a dietary depletion
design to reduce dopamine and serotonin levels. The depletion
might affect transmitter levels differentially in males and fe-
males, which could add noise to the data. Therefore, we in-
cluded only male participants. In the current study, we includ-
ed females in the elderly group because we did not expect any
differential effects of counterfactual processing between
sexes. All protocols were approved by the ethics committee
of the medical association of Hamburg, and carried out in
accord with the Declaration of Helsinki.

Strategic sequential investment task (SSIT)

The SSIT is a reward-based value learning and intertemporal
choice paradigm that involves a hierarchical state space for
sequential investment choices and presents both factual and
counterfactual outcomes separately on each trial. Screenshots
of an example trial are shown in Fig. 1. The choice event is
presented with a state-specific neutral background image and
is followed by a brief anticipation phase (combined 3,500 ms
duration). Participants enter their choice during this event.
Then, the outcome of the trial is presented indicating the
amount gained or lost by a stack of coins (2,000–5,000 ms
duration). Counterfactual outcomes are then presented as a
separate event (2,000–5,000ms duration) with a stack of coins
indicating howmuchmore could have been won or lost with a
maximal investment. Last, participants are shown the state
transition (2,700 ms duration) selected by their investment
magnitude, as well as the state transition that did not happen.

Figure 2 displays the task state space. The seven states of
the SSIT indicate fictive stocks (indicated by uniquely identi-
fiable background stimulus) that differ with respect to their
winning probabilities, as well as to the magnitude of potential
wins and losses (i.e., four states have negative expected
values, and three states have positive expected values). A
round of trials consisted of three decisions, one in each of
three different states, which comprised 1 of 4 possible paths
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through the state space. Each round of trials begins in State 1
and ends in either State 4, 5, 6, or 7. Participants choose in
each trial to gamble 0€, 1€, 2€, or 3€ that a fictive stock will
increase in value. The outcome of each trial (i.e., increase or
decrease in a fictive stock value) is probabilistic, and losses
occur more frequently than wins in most states. Because the

probability of winning and the payoff structure for each state
produces the same outcome regardless of the selected wager,
the effect of the wager is to scale the amount gained or lost.
For example, investments of 1€ or 3€ differ only in the amount
that each would return as a gain or loss on a given trial. As
such, larger investments (2€–3€) imply greater risk to lose
more and are referred to as high risk (HR), and lower invest-
ments (0€–1€) are referred to as low risk (LR).

Choices directly control state transitions deterministically,
but the behavioral contingencies that control the state transi-
tions are unknown to the participants in advance of the task. If
the participant makes an LR gamble, then the next state tran-
sition will be into a nonlucrative path. If the participant makes
an HR gamble, then the next state transition will be into a
lucrative path. Participants must learn to make choices that
accept moderate interim losses in order to steer state transi-
tions toward a lucrative goal state and optimize long-term
gains (i.e., intertemporal choices). For example, in order to
access the most lucrative State 4 (highest probability of win-
ning and highest payoff), participants need to risk losing mod-
erate amounts in States 1 and 2 by selecting HR gambles of 2
€–3€. Selecting an LR gamble (0€–1€) transitions to a less
lucrative path, and precludes access to State 4 and optimal
earnings. The optimal strategy to maximize earnings (and
minimize losses) in the SSIT is to select an investment pattern
of 2€, 2€, 3€, in states 1, 2, and 4, respectively.

Fig. 1 Screenshots from an example SSIT trial. The task presents five
separate events in sequence, starting with the upper left and proceeding
clockwise. The first event is the choice event, during which time the
participants enter their wagers. The second event is a brief anticipation
phase prior to the outcome. The third event shows the outcome of the trial

and the amount won or lost. The fourth event shows the counterfactual
outcome (i.e., how much more could have been won or lost with a
maximal wager). The final event shows the state transition, and a new
trial begins after a short intertrial interval

Fig. 2 The state space for the SSIT. The box next to each state number
displays the expected win/loss magnitude (top/bottom) for each trial and
long-term value of each state indicated by the mean expected value. State
4 has the highest mean expected value, and the path that ends in State 4
has the highest expected value of all paths
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Counterfactual consequences are instantiated in the SSITas
monetary gains and losses that were not experienced because
they are contingent on forgone, alternative choices of the par-
ticipant in a given trial. Such counterfactual gains and losses
(also referred to as fictive outcomes) are examples of down-
ward and upward counterfactual comparisons, respectively. A
counterfactual gain (downward comparison) occurs when an
alternative action (i.e., investment) would have led to a greater
loss, for which the counterfactual outcome is experienced as a
gain (savings) on a losing trial (e.g., investing everything in-
stead of a smaller portion would have led to an even greater
loss). A counterfactual loss (upward comparison) is a missed
opportunity that occurs when an alternative action would have
led to an increased gain, for which the counterfactual outcome
is experienced as a loss (cost) on a winning trial (e.g.,
investing everything instead of a smaller portion would have
led to an even greater gain). Such fictive reward signals can be
used in the SSIT to further inform valuation beyond the infor-
mation provided by standard reward prediction errors alone,
leading to more rapid acquisition of optimal action values.
The counterfactual consequences clue participants about the
potentially high expected value of certain patterns of sequen-
tial choices despite frequent losses (i.e., Paths 1 and 3).
Specifically, attending to counterfactual losses biases choices
toward outcomes that are optimal in the long run (i.e., Paths 1
and 3), whereas attending to counterfactual gains could bias
choices toward outcomes that are severely nonoptimal in the
long run (Paths 2 and 4). For example, adjusting behavior in
response to counterfactual losses guides future choices toward
larger investments (i.e., BI could have won more, so I will
invest more^) and more optimal gains over the long run be-
cause the participant ends up in the very lucrative State 4. In
contrast, adjusting behavior in response to counterfactual
gains biases decisions toward smaller investments (i.e., BI
could have lost more, so I will invest less^) and therefore
suboptimal SSIT performance.

At the end of each set of 10 rounds of the SSIT (30 trials),
participants rated their experienced win frequency for each of
the seven SSIT decision states (cued by their respective visual
patterns) on a scale from 0 = never win to 5 = always win (fMRI
data were not recorded during these ratings). These ratings
were collected eight times in total throughout the task and were
used to confirm that participants were engaged with the task
and able to acquire knowledge about the individual states but
did not assess knowledge of the overall task structure.

Prior to entering the MRI scanner for data collection, all
participants were given instructions of how to manipulate the
mouse to make choices and completed 15 to 20 practice trials
in order to become familiar with the aims of their task.
Participants received an explanation that the task contained
several conditions, that each condition would be related to a
different colored pattern, and that each colored pattern was
associated with a different probability of winning or losing.

They were shown that they start with an account value of 0€,
and were instructed that the goal of the task was to figure out
how to make choices so that they could earn as much money
as possible to fill their account. Practice trials did not contain
details of the actual SSIT task contingencies or payoff
structure used in the experiment, and participants were
not informed that state transitions could be controlled
by their choices. All participants confirmed they under-
stood how to manipulate the mouse, that their goal for
the task was to earn as much money as possible, and
that each trial involved an opportunity to win as well as
a risk of losing money.

Computational modeling

TheQ-learningmodel (Watkins&Dayan, 1992) estimates the
Q-value (i.e., expected value) of a chosen action given the
observed state in an online fashion. The probability of a par-
ticular choice is nonlinearly related to the expected sum of
discounted future rewards (i.e., expected value), which has
to be estimated from observations as with a temporal differ-
ence (TD) reward prediction error signal. However, the mea-
surable TD error incorporates only factual consequences stem-
ming from the chosen action. To model the decisions of the
participant in the SSIT task we therefore extended Q-
learning with counterfactual consequences in a two-
stage update process.

We developed a computational model of human SSIT per-
formance (FPEQ) , which nests the standard Q-learning
(StdQ) algorithm (Watkins & Dayan, 1992). FPEQ incorpo-
rates fictive rewards by updating action-specific expected
values with fictive prediction error (FPE) signals in a second
stage of processing on each trial, so that the Q-values are
adjusted twice on each trial. The first update is from the stan-
dard Q-learning temporal difference (TD) update, and the sec-
ond corresponds to the FPE update (explained below).
Counterfactual gains (f-) and losses (f+) are incorporated into
separate FPEs to dissociate their contributions to valuation.
After applying the standard TD reward prediction error update
to the chosen action, the FPEQ model computes an FPE- or
FPE+ from the f- and f+ associated with each forgone action
and updates their action values accordingly. Counterfactual
gains, f-, and counterfactual losses, f+, specifically refer to
the fictive gain or loss associated with each possible counter-
factual outcome for each trial. These are used to compute
fictive prediction errors (FPEs) within the model framework
and are not interchangeable because FPEs represent quantities
computed by the model. Previous research utilizing the SSIT
in a model-based fMRI experimental designwith young adults
(Tobia et al., 2014) demonstrated superior goodness of fit for
FPEQ compared to StdQ, which is directly attributable to the
incorporation of FPEs as action-specific value learning signals
because the FPEQmodel nested StdQ. The SSIT task consists

Cogn Affect Behav Neurosci (2016) 16:457–472 461



of seven states each indicated by a unique background stimu-
lus, where subjects choose among four actions of investing 0€,
1€, 2€, or 3€. We denote the market change of a stock by ot,
which is drawn from the reward function of each state as
described in Fig. 2. We denote the action at trial t as

at := {0, 1, 2, 3} in the state st := {1, 2,…, 7}. For the Q-
learning model, all Q-values were initialized with 0. After
choosing action at in the current state st, observing the succes-
sive state st + 1 and received reward rt, standard Q-learning
updates only the Q-value of the current state-action pair:

The learning-rate parameter α determines the pace of
changes in behavior and discount factor γ reflects the prefer-
ence of short-term over long-term rewards. Note that standard
Q-learning (StdQ) ignores the counterfactual information pro-
vided in SSIT.

FPEQ modeled the effects of counterfactual information in
a second TD-like update stage, in which the subject is present-
ed with the counterfactual outcome associated with having
invested the maximum amount. Analogously to Lohrenz
et al. (2007) and Chiu, Lohrenz, and Montague (2008), we
defined the experienced fictive prediction error (FPE) differ-
ently for positive and negative market outcomes:

& When the market goes up and less than 3€ is invested, the
counterfactual loss is defined as the amount of money one
could have won more (i.e., f+ :=3ot − rt).

& When the market goes down and more than 0€ is invested,
the counterfactual gain is defined as the amount of money
one would have lost more (i.e., f− := rt − 3ot).

For example, if the subject experienced a positive
stock value change of 10% after betting 1€, the coun-
terfactual loss is thus f+ :=(3€ - 1€) ⋅10% = 0.2€. For a
negative stock value change, on the other hand, the
counterfactual gain would be f− :=(1€ - 3€)⋅ (-10%) =
0.2€ as well. The counterfactual information modifies
the Q-learning algorithm in a second update phase with-
in the same trial by using the fictive reward signal
(f+or f−) as input to a TD computation for the more
optimal unselected actions. In contrast to StdQ, which
does not update any action’s Q-value with FPEs, all
actions that would have yielded better reward (unchosen
action) are updated by FPEQ, and the chosen action is
similarly modified; that is all a ≥ at if market goes up
and all a ≤ at if market goes down. For each of those
actions, the f : = {f+, f−} takes over the role of reward,
and the influence of counterfactual losses and gains is
modeled independently by different learning rates
αFPE : = {α+, a−}:

The model assumes that the participants learn over time to
which of the two possible next states (e.g., States 2 and 3 after
State 1) they will be transferred dependent on their decision.
With this formulation, both fictive error signals (counterfactu-
al gains and losses) produce congruent effects and always
increase the Q-value of the associated action. Thus, unchosen
actions that would have produced a better outcome than
the selected action increase in value on each trial. But
this produces differential effects on the chosen action
depending on whether the trial outcome was factually
winning (i.e., increase in stock value) or factually losing
(i.e., decrease in stock value) because the Q-value of
the chosen action is first modified by the gain or loss
with the TD, and then subsequently increased by the
FPE. As such, on winning trials, the Q-value for the

chosen action is increased twice, and on losing trials
the Q-value is first decreased and then adjusted in the
opposite direction.

Both the StdQ and the FPEQ model determine the likeli-
hood of a chosen action with a softmax:

P st; atð Þ ¼ exp β⋅Q st; atð Þð Þ
X 3

a0¼ 0
exp β⋅Q st; a0ð Þð Þ

:

The FPEQ model contains five parameters: the discount
factor γ, the inverse temperature β, the factual learning rate
α, and the counterfactual loss/gain learning rates α+ and α−.
Standard Q-learning is a special case (i.e., nested) with α+ = 0
and α− = 0. All the free parameters from both models were
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individually fitted to each subject by minimizing the negative
log likelihood of the data given different parameter settings
using MATLAB’s fminunc function. The goodness of fit for
StdQ and FPEQ models were compared using likelihood ratio
test and BIC scores. Direct comparison of model parameters
between age groups was performed using a two-sample t test
(df = 47, two-tailed significance).

Additional computational models

In addition to the StdQ and FPEQ models described above, we
also examined the fit of a model-based-Q (Doll, Simon, &Daw,
2012; Gläscher, Daw, Dayan, & O’Doherty, 2010) and win-
stay-lose-shift Q (Worthy & Maddox, 2014) model that could
potentially predict the SSIT choice behavior of either younger
or older adults better than our counterfactual-based FPEQmod-
el. Worthy and Maddox showed that older adults’ choice be-
havior was better explained by the WSLS model when the
outcomes of sequential choices are independent of each other,
but utilized reward predictions to guide choice behavior when
the outcomes of sequential choices were dependent. The SSIT
is a choice-dependent task for which the outcome of a series of
decisions is affected by current decisions. As such, we expected
that a model with reward predictions would be a better fit to
both groups’ behavior. The model-based Q (Gläscher et al.,
2010; Doll et al., 2012) postulates that participants make deci-
sions based on a learned cognitive model of probabilistic state
transitions, similar to a spatial navigation task, rather than learn-
ing state-specific reward predictions per se as in cache-based
(i.e., model-free) decisionmaking. Previous research has shown
that some task performance is accounted for by a model-based
decision-making mechanism that predicts probabilistic state
transitions, rather than rewards per se (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Gläscher et al., 2010). The
state transitions in the SSITare not probabilistic, and instead are
contingent on (deterministically) choice actions, and the FPEQ
model is a model-free algorithm that incorporates information
about reward predictions from the anticipated next state using a
TD-like learning rule. Therefore, we expected the cache-based
model of learning reward predictions with fictive learning sig-
nals previously implemented would provide the best fit (Tobia
et al., 2014). To foreshadow the results, the FPEQ model pro-
vided the best fit among the models (see Table 1) for both
young and older age groups, and so details of WSLS-Q and
model-based Q formalizations and results are included in
Appendix A.

MRI protocol

MR images were acquired with a 3T whole-body MR system
(Magnetom TIM Trio, Siemens Healthcare) using a 32-channel
receive-only head coil. StructuralMRIwere recorded from each
participant using a T1 weighted MPRAGE sequence (voxel

resolution of 1 × 1 × 1 mm3, coronal orientation, phase-
encoding in left-right direction, FoV = 192 × 256 mm, 240
slices, 1,100 ms inversion time, TE = 2.98 ms, TR = 2,300
ms, and 90 flip angle). FunctionalMR time series were recorded
using a T2* GRAPPA EPI sequence with TR = 2380 ms,
TE = 25 ms, anterior-posterior phase encode, 40 slices acquired
in descending (noninterleaved) axial plane with 2 × 2 × 2 mm3

voxels (204 × 204 mm FoV; skip factor = .5).

MRI data processing

Structural and functional MR image analyses were conducted
in SPM8 (Wellcome Department of Cognitive Neurology,
London, UK). Anatomical images were segmented and trans-
formed to Montreal Neurological Institute (MNI) standard
space using DARTEL. Functional images were corrected for
slice-timing acquisition offsets, realigned and corrected for the
interaction of motion and distortion using unwarp toolbox,
coregistered to anatomical images and transformed to MNI
space using DARTEL, and smoothed (8 mm FWHM).

Event-related first-level analyses included regressors for
each stimulus event shown in Fig. 1, and a set of parametric
modulators for trial-specific variables and computational
model parameters. Specifically, the first level GLM included
a regressor marking the onset of the choice/anticipation event,
outcome event, counterfactual outcome event, the state transi-
tion event, and one regressor marking the participant’s re-
sponse. The choice value (0€–3€) of the investment was used
as a parametric modulator (modeled during the choice/
anticipation event), and FPEQ model computed parametric
modulators included the time series of Qsa for the selected
action (modeled at the choice/anticipation event), TD predic-
tion error (modeled at the outcome event), and FPE (modeled
at the counterfactual outcome event). Thus, the TD prediction
error and FPE were modeled as separate events by design, and
the FPE was further divided into two sets of trials for f+ and f-
(all trials are accounted for in the model). On each trial, mul-
tiple FPEs are produced because there are multiple forgone
alternatives. The FPE associated with the most optimal for-
gone action was used as the parametric modulator in this anal-
ysis. Coincident parametric modulators were serially orthog-
onalized as by default in SPM8 (i.e., the Qsa was orthogonal-
ized with respect to the choice value).

The second level analyses contrasted the group average
parameter estimates of the first level regressors in separate
one-way ANOVAs (young control vs. elderly participants).
All results are reported at a whole-brain cluster threshold cor-
rection using AlphaSim (Forman et al., 1995), which was
performed with 2-mm isotropic voxels in MNI space, a
smoothness of 8-mm, and a voxel threshold of p < .001, for
1,000 iterations, and reported that a cluster of 125 voxels
achieved a statistical correction to p < .05. The results sections
reports Z-transformed t values (from second level parameter
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contrasts) for the peak voxel, and its MNI coordinates, from
each significant cluster.

Results

SSIT performance: earnings and choices

Statistical comparisons revealed significant group differences
for various measures of SSIT task performance. Elderly par-
ticipants earned an average of 160.21€ (+/- 101.16) and the
younger age group earned 355.95€ (+/- 248.35), which was
significantly different, t(47) = -3.2584, p < .001. Over the
entire task (240 trials), the elderly group wagered an average
of 1.42€ (+/- 1.02) on each trial, and this was less than the
younger group (2.17€, +/- .98), although it did not achieve
conventional statistical significance, t(47) = -1.9904,
p = .054. Early in the task, the elderly group wagered signif-
icantly more on average (1.62 +/- .39) in the first 10 rounds
(30 trials) than the young (1.26 +/- .51) adult group, t(44.69) =
2.7153, p = .008, suggesting that young adults learned to
make more HR investments whereas elderly adults learned
to make more LR investments. This is consistent with prior
research demonstrating that the elderly are not necessarily
characterized by preferences for either high or low risk (Lim
& Yu, 2015; Mata, Josef, Samanez-Larkin, & Hertwig, 2011).

SSIT performance: task knowledge, frequency of paths
and state visits

Over the entire task (80 rounds), seniors selected the path that
ended in the least lucrative State 7 (53%) more frequently than
the other three paths (11%, 26%, and 21% for paths ending in
States 4, 5, and 6, respectively). This shows that the elderly
did sometimes choose the lucrative path. However, during the
final round, when participants should have sufficient knowl-
edge of the task to perform near optimally, none of the partic-
ipants in the elderly group developed a preference for the
lucrative path that ends in state 4 during the final round of
choices, whereas 19/30 younger participants developed a pref-
erence for the lucrative path in the final round.

Figure 3 shows the group average state ratings split into
either early (1–120; i.e. first half of the experiment) or late
(121–240; i.e. second half of the experiment) trials. To analyze
differences in ratings for the seven states between groups and
over time, an ANOVAwith the between subject factor group
and the within subject factors state and time (first vs. second
half of the experiment) was conducted. A Greenhouse–
Geisser correction to adjust the degrees of freedom was ap-
plied if necessary. The effect of group was not significant,
F(1, 47) = .57, p = .46, but the effect of states reached signif-
icance, F(4.64, 218.06) = 39,13, p < .0001, indicating that the
ratings for state 4 and 6 differed from the rating for States 1, 2,
3, 5, and 7 (Tukey HSD p < .000005). Also, the interaction
reached significance, F(4.4, 218.06) = 3.78, p = .005 indicat-
ing that the ratings for state 4 differed between groups (Tukey
HSD p < .05). This shows that the young group rated the most
lucrative state (4) more highly than the elderly group, but that
the elderly group rated States 4 and 6 (the two most lucrative
states) more highly than the other states, showing that they had
acquired some declarative knowledge about the task. The ef-
fect of time was not significant, F(1, 47) = .59, p = .45, but the
state and time interaction was significant, F(5.17, 243.22) =
5.30, p < .00005, indicating a steeper increase for States 1 and
4 (Tukey HSD p < .005). Also the interaction of group, state
and time reached significance, F(5.17, 243.22) = 7.75,
p < .0001. To specify this interaction, post hoc group × time
ANOVAs for each state were computed and reached signifi-
cance for State 1, F(1, 47) = 30.24, p < .00001, and State 6,
F(1, 47) = 10.21, p < .005, but reached only a trend toward
significance for State 4, F(1, 47) = 2.92, p < .1. This indicates
that ratings of States 1 and 4 increased over time more in the
young than in the elderly, whereas it was the opposite for State
6. Critically, the ratings of the elderly also increased over time
for the lucrative States 4 (although slower than in the young)
and 6 showing that they acquired declarative knowledge about
the states.

Computational modeling: model fit comparisons

Table 1 presents the mean BIC scores and –LL values relating
the goodness of each model’s fit for the young and elderly age

Table 1 Model fitting parameters

Model BIC
Mean (SD)

-LL
Mean (SD)

Young Elderly Young Elderly

StdQ 521.12 (120.57) 654.45 (15.96) 252.34 (60.28) 319.01 (7.98)

FPEQ 488.35 (107.65) 599.71 (65.08) 230.47 (53.82) 286.16 (32.54)

ModelQ 516.78 (138.33) 652.56 (18.87) 247.43 (69.17) 315.32 (9.46)

WSLS Q 502.55 (113.99) 619.19 (56.07) 223.87 (57) 282.19 (28.04)
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groups. BIC scores penalize the model fit for the number of
parameters to avoid over fitting. Lower BIC scores indicate
better model fit. The FPEQ model had the lowest BIC scores
of all models tested including the model-based Q and WSLS-
Q models. The BIC scores for the different models were com-
pared with an ANOVAwith model as a within-subject factor
(StdQ vs. FPEQ vs. Model based vs. WSLS) and group as a
between-subject factor. The effects of group,F(1, 47),=,18.78,
p,<,.0001, and model reached significance, F(1.22, 57.24) =
15.93, p < .000001, indicating lower BICs for the FPEQ than
all other models (Tukey HSD all ps < .05). The interaction of
model and group did not reach significance, F(1.22, 57.24) =
1.14, p = .34. However, the model fits shown in Table 1 are
worse for the elderly group, and they are also less variable, for
all models. This may be due to the fact that there are fewer
participants in the elderly group, and they behaved more uni-
formly with regard to their pattern of choice in the SSIT.
Together these could have led to a worse model fit that was
less variable within the elderly group. We directly compared
the BIC scores for the FPEQ and the nested StdQ to determine
whether FPEs significantly contributed. The FPEQ model
BIC score is significantly smaller than the StdQ model for
the elderly subjects (t = 3.28, df = 18, p = .0021, paired t test)
as well as for the young subjects (t = 2.62, df = 29,
p = .0069). Since the FPEQ model nests the StdQ model, we
further compared their goodness of fit with the likelihood ratio
test. For both young and elderly subjects, the FPEQ model fit
the respective behavioral data significantly better than StdQ
model. The likelihood ratio test statistic and p value averaged
across young subjects are: χ2 = 43.7,p=3e− 10 , and for the
elderly subjects they are: χ2 = 65.7,p=5e− 15. Since the FPEQ
model nested the StdQ model, the improvements in model fit
obtained from three independent tests that penalize for

additional free parameters can be attributed directly to the
inclusion of fictive error signals.

Computational modeling: age differences for FPEQmodel
parameters

Table 2 presents a comparison of the FPEQmodels’ best fitting
parameters for the younger and elderly groups. Age group dif-
ferences were assessed with a two-sample t test (df = 47, two-
tailed). Both age groups similarly weighted TD prediction er-
rors (TD Learn Rate) and counterfactual losses (FPE+ Learn
Rate). There was a significant difference between younger and
elderly groups for the learning rate associated with counterfac-
tual gains (FPE- Learning Rate) indicating that counterfactual
gains had a stronger influence on action-specific expected
values for elderly than for young adult participants. In addition,
there was a significant difference between age groups for the
fitted inverse temperature parameter (β), indicating that youn-
ger adults made choices that exploited their task-specific ac-
quired knowledge more so than elderly adults, and therefore
the model was more stable. The age group average model com-
puted estimates of trial-by-trial expected value for the selected
action (Qsa) and absolute reward prediction errors (Abs. TD
Error) were not significantly different.

Table 3 shows the correlations between the FPEQ model
parameters and total earnings for each age group. All three of
the learning rate parameters were significantly correlated with
total earnings for the young group, but there were no signifi-
cant correlations for the elderly group. Importantly, the corre-
lation between FPE+ (counterfactual gains) and total earnings
was negative, and the correlation with FPE- (counterfactual
losses) was positive, showing that stronger weighting of coun-
terfactual gains was associated with poorer SSIT performance.

Fig. 3 State-specific ratings of experienced win frequencies for the
young and elderly adult age groups are shown for the first and second
halves of the SSIT. Data for the young group are shown in red, and data
for the elderly group are shown in blue. For each state, the left bar shows
the state rating averaged for the first half of trials, and the right bar shows

the state rating averaged for the second half. It can be seen that States 1
and 4 increased in rating for the young group but that States 3, 4, and 6
increased in rating for the elderly group, whereas the increase in ratings
for State 4 was less steep. For both groups, States 4 and 6 were rated most
highly. Error bars are standard error of the mean. (Color figure online)
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The sign of the correlations in the elderly group matched the
signs of those in the young group, but none were statistically
significant, which may symptomatic of the weaker model fit
and stability parameter for the elderly group reported above.

In addition, in order to examine whether the group difference
for the FPEs were related to task performance, we simulated the
FPEQ model using the best fitting parameters from the young
and elderly groups, respectively. Appendix B (see Figure S1)
shows the young group increasingly chose the most lucrative
Path 1 (blue line), whereas the elderly group increasingly chose
the least lucrative Path 4 (purple line), and thatmodel simulations
yoked to the young and elderly groups’ best fitting parameters
reproduced their respective preferences for Paths 1 and 4. This
shows that overweighting FPE- (counterfactual gains) is indeed
disadvantageous for decision making in a simulated SSIT.

Neuroimaging results

Figure 4 shows the results of the model-based fMRI analyses
for the FPEQ model quantities expected value (Qsa), predic-
tion error (TD), and fictive prediction errors (FPE+ and FPE-).

FPEQ: expected value (Qsa)

Figure 4 (top left) shows a significantly different correlation
betweenQsa for young and elderly in the vmPFC ([14 42 -16],
z = 3.19). The younger adult group showed a significant pos-
itive correlation between Qsa and neural activity in the

vmPFC, but the older adult group showed a negative correla-
tion that was not statistically significant. This shows that re-
ward predictions were coupled to fronto-striatal activity in
young adults, but not in older adults.

FPEQ: fictive prediction errors (FPE+ & FPE-)

The contrast between age groups for the FPE+ parametric mod-
ulator did not reveal significant differences between groups;
however, there was significant neural activity correlated nega-
tively with FPE+. We used the minimum statistic conjunction
null (Nichols, Brett, Andersson, Wager, & Poline, 2005) analy-
sis to determine if the response to FPE+ was significantly neg-
ative for both age groups in an overlapping area of the striatum.
The conjunction tests whether both groups show a similar sig-
nificant effect in an overlapping region. Indeed, both age groups
demonstrated a negative correlation with FPE+ (counterfactual
loss) in the ventral striatum ([16 4 -6], z = 2.89) as indicated by
the significant conjunction analysis shown in Fig. 4 (top mid-
dle). While it can be seen that the elderly group again showed a
stronger effect than the younger group, it was not significantly
different. The contrast examining the effect of age on FPE-
(counterfactual gain) failed to retain any clusters with the
whole-brain cluster threshold statistical correction. Because pri-
or research has shown that the ventral striatum is involved in
processing counterfactual outcome signals (Büchel et al., 2011;
Lohrenz et al., 2007) we tested for a significant effect with a
small volume correction, which is less conservative than the
whole-brain correction. We used a voxelwise small volume cor-
rection by placing a search sphere with an 8 voxel (16 mm)
radius around the right and left nucleus accumbens (MNI: [12
8 8; -12 8 -8]). The elderly group showed a stronger (negative)
modulation in the left ventral striatum (see Fig. 4, top right) with
a peak difference at ([-14 8 -12], z = 3.03; pFWE = .023;
p =.001, uncorrected) in the left anterior putamen.

FPEQ: reward prediction error (TD)

Both age groups demonstrated significant positive correla-
tions between TD reward prediction errors and neural activity

Table 2 FPEQ model parameters for elderly and young age groups

FPEQ
Parameter

Elderly
Mean (SD)

Young
Mean (SD)

Elderly > Young
t- val

Significance
p val

Decay rate .675 (.40) .813 (.33) −1.26 .21

Exploitation 6.00 (3.7) 9.39 (4.6) −2.82 .007**

TD Learn Rate .18 (.20) .12 (.08) 1.19 .25

FPE+ Learn Rate .028 (.06) .029 (.03) −.05 .95

FPE- Learn Rate .37 (.36) .16 (.23) 2.22 .03*

QSA .33 (.03) .35 (.02) −.49 .63

Abs. TD Error .37 (.06) .41 (.07) −1.76 .08

Table 3 Correlation of model parameters and total earnings

Elderly
r (p)

Young
r (p)

Decay Rate .024 (.92) .11 (.56)

TD Learn Rate −.01 (.96) −.42 (.02)*

FPE+ Learn Rate −.36 (.13) −.64 (.001)**

FPE- Learn Rate .23 (.34) .39 (.03)*

Exploitation .10 (.68) .33 (.08)

*p < .05; **p < .001
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in the ventral striatum. However, the elderly group showed a
stronger correlation ([14 4 -4], z = 3.49) than the younger
group in the right ventral striatum (see Fig. 4, bottom right),
suggesting that elderly participants’ neural activity is more
strongly coupled to reward prediction errors.

FPEQ: Exploitation, model stability, and expected value

Additionally, we examined the relationship between the FPEQ
model inverse temperature parameter, β, and group differ-
ences in neural activity involved in valuation as identified by
the model (Qsa/vmPFC, TD error/ventral striatum, FPE-/ven-
tral striatum). We conducted separate linear regression analy-
ses for the young and elderly groups’ data using theMATLAB
function robustfit with bisquare weighting to suppress the in-
fluence of outliers on the linear fit. For each analysis, the
FPEQ model β was the independent variable predicting mod-
ulated neural activity (first level GLM parameters for Qsa, TD
error, or FPE-, in their respective peak voxels reported above)
as the dependent variable. The β parameter significantly pre-
dicted Qsa-correlated neural activity in the vmPFC for the
young adult group, b = .033, t(28) = 2.58, p = .015, but not
for the elderly group, b = -.001, t(17) = -.048, p = .962. These
results are illustrated in the scatter and line plot at bottom left

of Fig. 4. The results for factual and counterfactual prediction
errors were nonsignificant, all ps > .05.

Discussion

Learning from fictive prediction errors is an important part of
reward prediction, and the neural system for reward prediction
from standard reward and fictive prediction errors involves a
fronto-striatal circuit (Chiu et al., 2008; Lohrenz et al., 2007;
Tobia et al., 2014). This study investigated whether age affects
decision making based on reward predictions learned with
fictive prediction errors (FPEs). We found that older partici-
pants performed poorly on the SSIT compared to younger
adults, weighted FPEs differently than younger adults, and
showed different correlations between neural activity in the
fronto-striatal circuit and reward predictions, reward predic-
tion errors and FPEs. The FPEQ model explained the data
from both age groups better than three other models previous-
ly used in the literature, which shows that decision making
guided by reward predictions, rather than outcome-response
strategies, such as win-stay-lose-shift, was the best fit for the
elderly. The reward predictions, prediction errors and FPEs
from the FPEQ model, were correlated with neural activity

Fig. 4 Age differences in BOLD signal modulation by expected value of
the chosen action (Qsa parameter) on each trial (left), counterfactual gain
(FPE-; top right) and TD reward prediction error (bottom right). Both age
groups showed a similar negative modulation in the ventral striatum for
counterfactual losses (FPE+) indicated by a significant conjunction
analysis (top center). Inset bar graphs depict the direction and amplitude
of the effect on BOLD signal, with data from the young group shown in
the red bars and data from the elderly group in the blue bars. Data in the
graphs are the group’s mean beta value (+/- standard error of the mean).
Images are shown on the MNI template at whole brain cluster correction

to p < .05. The group contrast for FPE- was significant with a small
volume correction as described in the results, and is shown at p < .005
uncorrected for visualization. Note. Y = young; E = elderly. The scatter
graph at the bottom left illustrates the relationship between the FPEQ
model inverse temperature parameter (x-axis) and parametric
modulation in the vmPFC by expected value (y-axis). Data and best fit
regression line for the elderly are shown in blue. Data and best fit
regression line for the young adults are shown in red. Lines show a
positive relationship for young adults and no relationship for elderly
adults. (Color figure online)
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in the fronto-striatal circuit previously implicated in age-
related differences in processing reward predictions and re-
ward prediction errors (Chowdhury et al., 2013; Eppinger
et al., 2012; Rademacher et al, 2014; Samanez-Larkin et al.,
2007, 2014; Vink et al., 2015). Importantly, age did not sig-
nificantly affect TD learning rate nor the average experienced
TD error. Taken together, these results support the interpreta-
tion that poor SSIT performance by the elderly group was
related to altered behavioral and neural responsiveness to
counterfactual outcomes.

Disadvantageous overweighting of counterfactual gains
in the elderly

Evidence from the FPEQ model and fMRI data agree that the
elderly group was more responsive, behaviorally and neurally,
to counterfactual gains – which were not associated with ad-
vantageous future-oriented decision making by design in the
SSIT. The elderly group was more sensitive to FPE- than the
younger group according to the significantly increased
FPE- learning rate parameter, and the fMRI results
showed a stronger neural response (negative correlation)
in the left posterior striatum to the FPE- event. In ad-
dition, the elderly adults demonstrated a similar FPE+
response in the right ventral striatum as the young, and
the FPEQ model weighted FPE+ similarly for both
groups, showing no differences in behavioral or neural
responsiveness to counterfactual losses between groups.

Previous research has demonstrated that healthy elderly
adults are less affected by counterfactual outcomes (Brassen
et al., 2012) and actually utilize decision making strategies
that don’t rely on reward predictions, such as win-stay-lose-
shift (Worthy & Maddox, 2012). The results of the model
fitting shows that elderly adults SSIT performance was more
likely to be guided by reward predictions than a strategy that
doesn’t utilize reward predictions. Furthermore, the FPEQ
model results indicate that counterfactual gains and losses
significantly impacted reward predictions and decision mak-
ing in both age groups. Three independent tests that penalize a
model for free parameters verified that the FPEQmodel fit the
data better than the StdQ model (as well as a model-based Q
and win-stay-lose-shift Q model; see Table 1 for model fits
and Appendix A for model details). The StdQ model nested
the FPEQ model such that the models are equivalent if the
fictive prediction errors fail to make a contribution (learning
rate parameters are 0). As such, any improvement in model fit
can be attributed to incorporating fictive prediction errors, and
the significant improvement identified by three separate tests
emphasizes the importance of counterfactual information for
generating reward predictions in accounting for SSIT
performance.

Our results also show that elderly adults are significantly
more sensitive to counterfactual gains than young adults,

which may account for performance differences between the
age groups. The elderly group weighted counterfactual gains
significantly more than the young adults, but there was no
group difference for counterfactual losses. The larger learning
rate for counterfactual gains by the elderly means that the
expected values of disadvantageous LR investments are dis-
proportionately increased compared to the young adults. At
the same time that counterfactual gains increase values for LR
investments (i.e., any losing trial with an investment greater
than 0), the expected values of advantageous HR investments
are unadjusted, thereby leading to a greater likelihood of
overvaluing and choosing a nonlucrative path through the
SSIT, as demonstrated by the elderly group in this study.

This finding seems in conflict with prior research showing
healthy older adults are insensitive to counterfactual outcomes
(Brassen et al., 2012). However, this difference is likely relat-
ed to substantive differences in the paradigms between the
current and previous research. In the current research, coun-
terfactual outcomes are informative with respect to subsequent
choices in that they clue participants to the true value of the
decision path (i.e., choice-dependent task) allowing acquisi-
tion of reward predictions for actions not selected, whereas
previous research employed a task with discrete trials whose
outcome was irrelevant (i.e., choice-independent task) for fu-
ture choice (Brassen et al., 2012). Thus, our findings are in
agreement with Worthy and Maddox (2014) concerning
choice-dependent and choice-independent tasks; when coun-
terfactual prediction errors signals can be used for learning
reward predictions tomake choice-dependent decisions, elder-
ly adults are indeed responsive. Furthermore, the incongruent
findings between our results and Brassen and colleagues’ find-
ings seem to indicate that elderly participants are insensitive in
one context (choice-independent), and overly sensitive in an-
other context (choice-dependent), to counterfactual gains and
losses, and that in either case it is significantly different from
the behavior of younger adults. This suggests that the aging
system does not adapt optimally to either task context,
and instead settles at extremes rather than an optimal
intermediate state.

Counterfactual gains and reduced choice consistency

The results reported above suggest that age-related differential
weighting and neural processing of counterfactual gains, but
not counterfactual losses, may be related to relatively poor
SSIT performance by an effect on the stability of reward pre-
dictions. The group analysis of the FPEQmodel revealed only
two parameters that were significantly different between
younger and elderly adults: the FPE- learning rate for coun-
terfactual gains discussed above, and the inverse temperature
parameter, β, indicating the influence of acquired knowledge
on behavioral stability. When the value of β is high, more
knowledge was exploited during choice and choice patterns
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become more stable, and low values are related to exploration
and prolonged learning. A more stable pattern of choices in
the SSIT can lead to greater success (i.e., accrued more re-
ward) if it follows a lucrative path, or less success if it follows
a nonlucrative path. The significantly reduced β values in the
elderly group are suggestive that more choices were dedicated
to exploration of the task, leading to reduced behavioral sta-
bility and a prolonged learning period. This suggests that el-
derly participants’ performance should improve given suffi-
cient trials. The SSIT presents a large number of trials, as well
as interim probes of task-related declarative knowledge (ex-
cluding knowledge of state transition rules). Results of the
ANOVAs indicated that the elderly group demonstrated suffi-
cient declarative knowledge of the task (that States 4 and 6 on
average were rated most highly); however, the interaction
from the three-way ANOVA showed that the young and el-
derly groups changed their values for States 1, 4, and 6 differ-
ently. The ratings for States 1 and 4 increased for the young
group, suggesting they had knowledge that these states led to a
higher expected value, and is consistent with their preference
for the most lucrative path during the final round of trials. The
elderly group showed, instead, an increase in rating for State
6, a slower increase in rating for State 4, and no increase in
rating for State 1. The increase in rating in State 1 is important
because a HR wager in this state is required to advance along
the most lucrative path, and, as such, none of the elderly pre-
ferred the most lucrative path during the final 10 rounds of the
task (Figure S1 in Appendix B also shows that the elderly
group preferred the least lucrative path throughout the
experiment). The group difference in ratings and the lack of
improvement in performance by the late rounds of the task in
the elderly group suggests that counterfactual outcomes may
be involved in generating choice inconsistency and reduced
model stability in the elderly.

Over-weighting counterfactual gains may reduce choice
consistency by altering the coupling of reward predictions
and neural activity in the vmPFC because of conflict between
knowledge that a path can produce a large payout versus the
expected value of an action on a particular trial. Highly valued
LR investments, such as those influenced by counterfactual
gains, are in conflict with acquired knowledge that states or
paths produce larger payouts because they preclude the advan-
tageous state transitions necessary to follow the lucrative
paths. This could lead to less stable choice patterns and a
reduced β parameter if resolution of such choice conflict vac-
illates between exploiting knowledge for a given pattern of
choices by placing HR investments (i.e., a path) on some
trials, and exploiting knowledge that is strongly influenced
by counterfactual gains (i.e., expected value) by placing LR
investments on other trials. As such, elderly participants may
not have been able to consistently overcome the inflated ex-
pected values for LR investments stemming from their over-
weighting of counterfactual gains. Furthermore, increasing

values of β predicted a stronger relationship between Qsa
and neural activity in the vmPFC for the young adult group
only. The lack of a relationship in the elderly group may be
due to vacillation between choosing actions guided by FPEQ
reward predictions (LR wagers for the elderly group) versus
actions that are not highly valued by the model (i.e., HR wa-
gers). However, it is necessary to take this interpretation with
caution because the softmax beta captures anything that is not
related to reward maximization (including model misfit and
noise) and may therefore have multiple (possibly poorly de-
fined) interpretations.

Reward prediction errors in the ventral striatum

The TD error was more strongly correlated with neural activ-
ity in the ventral striatum than the young adults, but there were
no differences between age groups for the experienced TD
error or TD learning rate. This is consistent with prior work
showing altered neural processing of reward prediction errors
in the elderly (Eppinger, Schuck et al., 2013), but deviates in
that elderly adults generally show a combination of reduced
behavioral and neural responsiveness to reward prediction er-
rors. Moreover, it reflects a general trend in our data by which
older adult’s neural activity is more strongly correlated to con-
sequences, factual and counterfactual, than young adults.
Such subtle differences in neural processing, in the absence
of measurable behavioral differences, may be indicative of
age-related changes in neural activity at a smaller scale, such
as age-altered dopamine or serotonin functioning (Backman
et al., 2000; Chowdhury et al., 2013; Goldberg et al, 2004;
Lamar et al, 2009; Matuskey et al, 2012; Volkow et al, 1998).
In our previous research, we found that altered dopamine
levels were related to different correlations between TD error
and neural activity in the ventral striatum but there was no
effect on learning from TD reward prediction errors (Tobia
et al., 2014). In addition, we also found that altered serotonin
levels were associated with a reversed correlation between
reward predictions (Qsa) and neural activity in the vmPFC,
but there was no effect on reward predictions per se (Tobia
et al., 2014). Together, these suggest that the model-based
experimental design may be sensitive enough to identify
age-related effects of neurotransmitter-specific activity on
the component processes of reward prediction and prediction
error even when there are no detectable behavioral differences
(Tobia et al., 2014). The age effect on correlations between
neural activity and reward prediction errors (TD error) and
reward predictions (Qsa) implicates age-altered functioning
of dopamine and serotonin systems in the ventral striatum
and the vmPFC, respectively. Furthermore, this tendency to
overactivate for prediction errors relative to the young
adults may reflect a compensatory response in the elder-
ly due to age-altered efficiency in neural processing
circuits. This may explain why there were age
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differences in neural activity, despite the lack of detect-
able behavioral age differences in reward prediction and
responsiveness to reward prediction errors.

Limitations and future research

There are several limitations of this study that require taking
our data and conclusions cautiously. First, the model fits were
not equivalent between age groups, suggesting that the FPEQ
model, although the best fitting among the models we imple-
mented, may not provide a good comparison between the age
groups. However, differences in model fit are not unusual and
difficult to avoid when comparing groups. Future research
could examine a larger sample of older adults and select a
subset of those with good model fits for subsequent analyses.
This speaks to a larger problem, where the elderly may repre-
sent a heterogeneous population for which no single model is
the best predictor of behavior, thus requiring multiple models
to be integrated in order to fully characterize age effects.
Additionally, our results could be related to competition be-
tween cache-based and model-based systems (Daw et al.,
2011) in the elderly. However, a model-based Q model was
less good fit than the FPEQ model, consistent with our expec-
tation that the deterministic state transitions in the SSIT (a
choice-dependent task) would be sufficiently explained by
action-specific reward predictions, rather than decision mak-
ing guided by state-transition predictions per se. Finally, the
mediating effect of altered working memory in the elderly
could impair task performance. Other research shows that
age-related effects of working memory on decision making
in multialternative choice tasks do not fully explain task per-
formance differences between age groups (Eppinger, Walter,
et al., 2013). In addition, our participants were thoroughly
screened for intellectual deficits, and so it is unlikely to greatly
influence the results of this study.

Summary

The results of this study demonstrate that age significantly
impacts decision making based on reward predictions learned
with FPEs. Elderly adults exhibited greater behavioral and
neural responsiveness to counterfactual gains (FPE-) than
younger adults. Task-related activity in the fronto-striatal cir-
cuit was also affected by age, where older adults generally
showed stronger responses to factual and counterfactual con-
sequences in the striatum, but a non-significant correlation
with reward predictions in the vmPFC. Our findings are in
general agreement with previous literature showing that rela-
tively poor decision making in multialternative choice tasks in
older adults is related to aberrant reward prediction and pre-
diction error processing in this fronto-striatal circuit
(Chowdhury et al, 2013; Eppinger, Walter et al., 2013;
Eppinger, Nystrom, et al., 2012; Eppinger, Schuck, et al.,

2013; Grady, 2012; Hedden & Gabrieli, 2004; Rademacher,
Saalma, Grunder, & Sprecklemeyer, 2014; Samanez-
Larkin et al., 2007; Samanez-Larkin et al., 2011;
Samanez-Larkin et al., 2014; Samanez-Larkin &
Knutson, 2015; Vink et al., 2015; ), and extends these
findings to include altered processing of counterfactual
consequences. Finally, this study advocates the model-
based fMRI experimental design to study both behavior-
al and neural systems for decision making between age
groups but cautions that model fits be carefully taken
into account when drawing conclusions about group dif-
ferences. Future research should design tasks that allow
application of multiple models, or integrated models, to
account for the diversity of decision making mecha-
nisms and could consider how counterfactual gains and
losses affect arbitration between model-based and cache-
based decision-making mechanisms in aging.
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