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Abstract

Decision making under uncertainty and under incomplete evidence in multiagent settings is of in-

creasing interest in decision science, assistive robotics, and machine assisted cognition. The degree to

which human agents depart from computationally optimal solutions in socially interactive settings is

generally unknown. Yet, this knowledge is critical for advances in these areas. Such understanding

also provides insight into how competition and cooperation affect human interaction and the under-

lying contributions of Theory of Mind. In this paper, we adapt the well-known ‘Tiger Problem’ from

artificial-agent research to human participants in single agent and interactive, dyadic settings under

both competition and cooperation. A novel element of the adaptation required participants to predict

the actions of their dyadic partners in the interactive Tiger Tasks, to facilitate explicit Theory of Mind

processing. Compared to computationally optimal solutions, participants gathered less information

before outcome-related decision when competing with others and collected more evidence when co-

operating with others. These departures from optimality were not haphazard but showed evidence

of improved performance through learning across sessions. Costly errors resulted under conditions

of competition, yielding both lower rates of rewarding actions and lower accuracy in predicting the

actions of others, compared to prediction accuracy in cooperation. Taken together, the experiments

and collected data provide a novel approach and insights into studying human social interaction and

human-machine interaction when shared information is partial.

1 Introduction

Knowing what contributes to successful cooperation and competition is critical for ensuring organiza-

tional and institutional sustainability in flourishing societies. This knowledge is required by teams of

investors, businesses, manufacturing design and implementation, health care workers, jurors, security

forces, search-and-rescue specialists, government agencies, and even voters. Each person or group

seeks evidence gained from limited, partial observations, to reach a decision: Is it time to act on

Option A or Option B, or is better to keep accumulating evidence before performing a consequential

and irrevocable action?
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In each context, formal computational models of agent actions can identify optimal sequences of

exploration and/or option selection. Ideally, these models will allow for robust artificial intelligence

(AI) systems that pair with human agents in contexts of competition and cooperation. These contexts

include socially assistive robotics [1, 2, 3] and machine assisted cognition or decision making [4, 5, 6, 7].

To achieve these goals, principled design for machine-assisted cognition must move beyond modeling

normative actions and action probabilities, as noted by Pacaux-Lemoine and Flemisch [8], to develop

accurate models of the beliefs and intentions of the human agents. Only following such a research

program will yield the best adaptations of machine-based guidance in shifting contexts. Models

of beliefs and intentions require accounting for how human agents’ beliefs, intentions, and actions

differ from computationally optimal solutions, since what is computationally optimal is only rational

under the conditions of narrow, static value functions and a limited array of learning algorithms.

One especially needs to know how these differences are affected by changes in the competitive and

cooperative environments which in turn influence human state representation and valuation of gains

and losses for self [9, 10] and others [11]. Progress in meeting these requirements will involve studying

how human agents act in the same simulated partially observable, valuationally uncertain tasks that

are used to advance robotic and other computational agents in multiagent interaction.

This paper adapts the ”Tiger Problem”, a widely known artificial agent simulation framework for

single agent and multiagent modeling under conditions of uncertainty and partial observation [12,

13], to demonstrate influences of competition and cooperation on choice and choice timing of human

participants in interaction. We have adapted the Tiger Problem to create several Tiger Tasks in single

and multiagent, interactive formats. We hypothesized that human agents will depart significantly from

computationally optimal actions. While we focus here on presenting outcomes and optimal models

of the actions of single agents and of dyadic interaction in our single agent Tiger Task (TT) and

Interactive Tiger Tasks (ITTs) respectively, our future work will pursue formal modeling of the beliefs

and intentions of human agents and of the agents’ beliefs about the beliefs and intentions of other

agents.

Decision-making under uncertainty has been a central focus of decision science since its inception [14].

Several computational models have been developed to provide normative solutions to this problem and

to accurately model empirical data in such situations. Most of these postulate an expected reward as

a common currency [9, 15, 16] on which all decision options are projected and upon which choices are

made. At its core, such an expected value combines information about the probability and magnitude

of an associated outcome. By gathering more evidence, the uncertainty about these two properties

can be reduced and decisions can improve.

The fields of operations research and of artificial intelligence in computer science have long investigated

challenges of this kind [17, 18, 19]. In a seminal paper, Kaelbling et al [12] introduced a novel

simulation problem environment and model for investigating decisions in which an agent needs to

develop beneficial strategies or policies when they only have partial information about the state of

the environment. The ”Tiger Problem” places an agent in a situation in which there is a pot of gold

incurring a small monetary gain and a tiger incurring a large monetary loss, each of which is behind

one of two doors. The agent’s task is to listen at the doors for the tiger’s growl, which is partial

evidence of the tiger’s location. When the agent is sure about the location of the tiger, they should

open the other door to receive the reward. Repeated trials allow the agent or agents to build up

beliefs regarding the tiger’s (and the reward’s) location. On each trial the agent chooses to gather
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more information by choosing Listen, or chooses to take a consequential action by choosing either

Open Left Door or Open Right Door. Weighing the gathered evidence against the potential gain/loss

is crucial for decision making under partial information.

One of the limitations of the original Tiger Problem is that it was incapable of addressing multiagent

contexts in which agents must develop models and be sensitive to other agents’ representations of the

environment. These contexts require some way of formally modeling the models of other agents, that

is, modeling a ”theory of mind” (ToM; [20]), especially in situations where both the environment and

other agents’ actions constitute critical uncertainties in decision making. To overcome this limitation

Gmytrasiewicz and Doshi [13] introduced the interactive Tiger Problem (ITP), along with a modeling

solution. In the interactive case, each agent can make probabilistic observations regarding both the

tiger and the other agents’ actions. When agents in the ITP listen, they listen for both growls and

creaky doors vs. silence. If a growl comes from the door on the left, that is partial evidence that a

tiger is behind that door. If a creak comes from the door on the right, that is partial evidence that

the other agent opened that door. If no door makes a creaking sound, that is evidence that the other

agent is also listening.

The conditions of competition and cooperation are expected to lead human agents to depart from

computationally optimal actions. In competitive contexts, agents may experience pressure to race one

another to the door that has the reward. Competitors may act more hastily, prior to obtaining all

of the evidence they need, since they will weigh reward against the risk of opening the wrong door

and the risk of one’s competitor opening the correct door. In cooperative contexts, agents may decide

to take more time to listen since they expect others will also patiently gather as much evidence as

possible to ensure a maximum reward for all.

The goals of this study were to adapt the Tiger Problem from AI to the domains of human action and

interaction, under both cooperative and competitive contexts. We adapted the Tiger Problem and

the Interactive Tiger Problem to a single-agent Tiger Task (TT) and a dyadic Interactive Tiger Task

(ITT), respectively. Using modifications to the reward or payout matrices, following [21], we presented

participants either with a competitive or a cooperative ITT. This allowed us to compare human

choices in the individual Tiger Task (TT) and in both the competitive and cooperative variations of

the Interactive Tiger Task (ITT) to what we already know to be computationally optimal choices.

In our ITT design, we also added a novel aspect, requiring participants to predict the action of the

other agent prior to choosing their own action. Immediately prior to reporting their own choice in the

competitive or cooperative version of the ITT, each participant needed to report their prediction of

the other participant’s choice. We introduced this element as a way of facilitating explicit focus on the

other person and their actions, which increases the likelihood of participants engaging ToM processing

[22, 23]. This step should elicit data that allows us to model and assess putative ToM processes more

directly in our future work.

In this study, we wanted to identify how cooperation and competition influence departures from the-

oretical optima, and to compare these departures directly to the departures from optimality in the

single-agent TT. This approach allows us to address several of the key requirements for optimizing

socially assistive robotics and machine assisted cognition, as discussed. Further, we wanted to assess

whether any departures from computationally optimal choices might benefit human agents by asso-

ciating with better performance in avoiding the tiger and reaching the reward, and in more accurate

predictions of other agents’ actions. Machine assisted cognition and socially assistive robotics may fail
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in their goals if they do not adequately model what real human agents actually value, believe, and do.

Computational optimality will in fact become suboptimal with respect to the goals of assistive robotics

if the recommended interactive options result only from static, artificial value functions and do not

adapt to human agents’ departures from those functions. Situations could also arise in which human

agents’ expertise is important. In complex multiagent interactions for which human agents have some

expertise, human situated cognition may yield values, beliefs, and actions that end in more optimal

outcomes than those driven by limited value functions and learning algorithms, especially under con-

ditions of limited data availability. Even in a simplified task context such as the ITT, we would expect

that human agents can produce accurate predictions of other agents’ actions, if human agents did in

fact model other agents’ beliefs and expected values. Thus, we present analyses of overt predictions of

others’ choices as an approximate readout of ToM processes, and we assess how the accuracy of those

predictions depends upon choices during cooperation and competition between persons.

We test and report two versions of the reward matrices and our hypotheses are as follows. We do not

expect the differences between the two reward matrices to strongly affect participant actions, while

of course expecting differences in computationally optimal behavior. Our original reward matrix [12,

13] presents a large risk/reward ratio. Under this large ratio of risk to reward, we expect participants

in the TT to listen for the tiger much less than is optimal because we expect that humans would

overweight losses from sequential listening actions (i.e., -1) and underweight the probability of loss

when opening the wrong door. When the risk/reward ratio is much smaller, as in our second, modified

reward matrix, we expect participants in the TT to listen for the tiger optimally or slightly more than

is optimal. The modified reward matrix in the TT is more forgiving of errors than is the original

matrix and keeps the penalty for listening the same. In the ITTs, we expect that competition and

cooperation would lead to divergent response patterns. Under competition, we expect that people

would race the other participant to the good door, and so would listen less than they do in the TT,

despite the ITTs requiring additional cognitive load to integrate partial observations of others’ actions

(i.e., creaks, silence) than is the case in the TT. Conversely, we expect cooperation to elicit greater care

and coordination in evidence gathering so that both participants would have the best opportunities

to maximize their joint rewards. So participants in the cooperative ITT were expected to listen more

often than in the competitive ITT and in the TT.

Since participants in the cooperative ITT are expected to listen more and so to have greater access to

evidence, and since better evidence should include estimation of others’ models and actions, we expect

cooperation to yield more accurate predictions about other agents’ actions, compared to competition.

We also expect that people would choose actions consistent with their predictions more often during

cooperation than during competition, suggesting greater explicit or implicit confidence in the evidence

underlying those predictions or in the predictions themselves.

2 Methods and Materials

2.1 Participants

This study was approved by the Ethics Committee of the German Psychological Association (ref no.

JG012015-052016) and carried out according to the Declaration of Helsinki. All participants gave

written informed consent and were financially reimbursed for their participation. We invited 182

participants to play several variants of the Tiger Task (TT and ITT), all of whom were naive to the
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task. The variants differed in their payout structure (original/modified, see below for details), their

complexity (single/multiagent), and their interactive context (cooperative/competitive). From the

total, 58 participants played the original payout structure variant of the TT [12], after which they

played in either the cooperative (30 participants) or the competitive context (28 participants) with

random assignment. All participants played the single-agent version of the TT before the multiagent

ITT version. The remaining 124 participants took part similarly in the modified payout structure

variant of the TT and ITT. Here after participating in the TT, half the participants played (randomly

assigned) in the cooperative and the other half in the competitive context.

2.2 Experimental Schedule

An ITT dyad consisted of 2 participants who were comfortably seated next to each other at two

computer screens. A partition separated the participants so that each could only see their own

screen. The experimenter was a muted observer for the duration of the task, separated from the

two participants by an additional partition (Figure 1). The room temperature averaged mean ±
s.d. : 22.59 ± 1.31 degrees Celsius. The dyad interacted using either the original payout structure

or the modified payout structure of the ITT after participating in the respective TT. Each dyad

played either in the cooperative or the competitive context, but not both. The experimental setup

was implemented in the Psychtoolbox Version 3.0.14 running under MATLAB version 9.1.0 (The

MathWorks, Natick, MA). Concurrent dyadic, synchronized high density EEG was recorded from a

subset of participants, for use in subsequent analyses. Those will not be presented in this paper. Good

performance also earned participants a relative financial bonus. The experimental code for running the

experiment is available from the project’s github page https://github.com/SteixnerKumar/tiger_

task_experiment.

Figure 1: Task schematic of the experiment. The dyad (two participants X and Y) were separated by a partition.

Each participant faced their own computer screen playing the tiger task and wore headphones playing constant

static to ensure that they could not hear key presses or other low level sounds. Additionally, each wore an EEG

cap in a hyperscanning setup. The experimenter silently monitored the behavior and EEG from behind another

partition.

2.3 Task

In the task, individual trials began with two doors presented on the computer screen. Participants

understood that each door concealed either a tiger or a pot of gold (i.e., reward). The task was to

open the correct door (i.e., the one hiding the pot of gold) and avoid the tiger. On each round, a
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participant had a set of three different actions available: listen (L), open the door on the left (OL),

and open the door on the right (OR). The L action gave a probabilistic hint about the location of the

tiger that is 70% accurate, via a growl behind the left door (GL) or a growl behind the right door

(GR). The OL/OR actions opened the chosen door. After the participant opened a door, they saw

the result and the system randomly reallocated the location of both tiger and reward (50% chance

of being behind any particular door). Participants understood the underlying probabilities via task

instructions and saw the potential reward associated with each action during each round, via the

payout matrix. (refer to the figures 2 and 3 for a visual guide). The task also differed in complexity

depending on whether it was the single-agent version (TT) or the multiagent version (i.e., ITT).

A “session” of the TT or ITT was a total of 10 tiger-trials (i.e., 10 door openings). The participant

sought to maximize the total rewards obtained during the particular task session. In the ITT, L actions

provided probabilistic information about both the tiger’s location and the other agent’s action. The

sound of a creaking door on the left or right (CL or CR) gave partial evidence that the other agent

opened the corresponding door and silence (S) gave partial evidence that no door was opened. These

cues were 80% accurate regarding the true action of the other agent. Additionally, the tasks used

color coding to help differentiate actions of self (yellow) and other (blue).

2.3.1 Single-agent Version

In the single-agent version, the participant played alone. A “tiger-trial” consisted of a sequence of

listen actions that ended with the participant opened one of the doors. During a session, the location

of the tiger/reward changed only if a door was opened.

Figure 2: Task sequence of the single-agent version of the tiger task (TT). At the beginning of each deci-

sion step, the participant sees two doors and is tasked to make an action choice (CHOICE) from a set of

three actions (Listen (L), Open-left (OL), Open-right (OR)). Participants have 5 seconds to make their choice,

else a default listen action is chosen for them. A chosen listen action leads to a probabilistic observation

(PHYSICAL-OBSERVATION, 70% correct), and the sequence repeats. The probabilistic hints are signified by

semi-transparent images of the tiger and the gold-pot on the respective doors. There is always an inter-event-

interval (IEI) of ∼ 1600 milliseconds. Choosing left/right open action opens the door (OUTCOME), where the

participants either receive the gold-pot or encounter the tiger (tiger encounter is shown here). Opening the

door resets the tiger and the gold-pot to begin the task sequence again. The matrix in the red box shows the

potential payouts the participant can expect upon the different action choices (constantly displayed through

the TT).
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The task began with a choice-screen (5sec.) asking the participant to choose an action (Figure 2). The

number of L actions were not limited, but if a choice was not made during the allotted time, a forced

listen action was assumed to move the task forward. Following an intra-event-interval (IEI)(+ ∼
1600ms.), either the observation-screen was displayed (5sec.) after a listen action (L), or the outcome

screen (5sec.) was shown after an open-left (OL)/open-right (OR) action, which revealed the gain

from the particular tiger-trial and the total gain from the session to that point. Opening the correct

door (pot of gold) incurred a small win, whereas opening the incorrect door (tiger) incurred a large

loss. The participant gathered sufficient evidence about the tiger location through a series of L actions

(incurring a small loss each time) before opening a door (OL/OR action).

2.3.2 Multiagent Version

Figure 3: Task sequence of the multiagent version (cooperative and competitive context) of the interactive tiger

task (ITT). The task sequence is color-coded for the participant. Blue represents the other participant and yellow

represents the self. To facilitate attention and Theory of Mind regarding the other agent, the participant begins

each round of the task by predicting the action choice of the other participant (PREDICTION, the blue dot

in the middle indicating that the agent should think about the other agent’s action. Possible actions: L, OL,

OR). The participant has 5 seconds, else the default L is chosen to move the task forward. After an inter-

event-interval (IEI) of ∼ 1600 milliseconds, the participant has to make the personal action choice (CHOICE,

represented by the yellow dot in the middle indicating that the agent should think about their own action).

For this the participant similarly has 5 seconds, else the default action L is chosen. Regardless of the one’s

own action, the participant obtains probabilistic (80% correct) social information (SOCIAL-OBSERVATION,

the blue dot in middle) about the other participant before either receiving the probabilistic hint (70% correct)

about the locations of the tiger and the pot of gold. (PHYSICAL-OBSERVATION, yellow dot in the middle

of the screen) for L actions, or opening the door (OUTCOME, yellow dot in the middle of the screen) for OL

or OR actions, to get the gold-pot/tiger (tiger encounter is shown in the figure). Opening the door randomly

reallocates the tiger and the reward locations to begin the tiger-trial sequence again. The matrices in the red

box show the potential payouts the participant can expect as determined by the choices made by the agent

(participant X) and the other agent (participant Y). This is context-specific for cooperation and competition

(constantly displayed through the ITT).
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The ITT consisted of both cooperative and competitive contexts. To perform optimally in the task,

participants had to use partial observations to update beliefs about the tiger’s location (i.e., growls

(GL/GR)) and the other participants’ actions (i.e., creaks (CL/CR), silence (S)), along with repre-

sentations of those participants’ beliefs and expected values. This medley made the ITT complex

because the rewards were determined by joint actions of both participant, which required higher cog-

nitive loads and social-cognitive processes to develop a strategy for when best to open a door. In the

cooperative context, the maximum joint reward occurred when both participants opened the correct

door on the same round, while in the competitive context, the maximum payoff to a participant was

obtained when the participant opened the correct door while the other participant opened the wrong

door on the same round.

We modified the original design of the multiagent Tiger Problem [13] (Figure 3) such that each

round began with the prediction-screen (with blue-dot) that required participants to predict the

other participants’ actions (L, OL or OR). Next, the choice-screen (with yellow-dot) prompted the

participant for their own action (L, OL or OR), just as in the single-agent version. The participant

then received a probabilistic hint about the other participants’ actions (80% accurate) on the social-

observation screen (with blue-dot). Finally, only after the partial observation of the other’s action did

the participant receive a payout in the outcome-screen (for OL/OR action choice) or a probabilistic

hint (for L action choice) about the tiger’s location, in the physical-observation screen (with yellow-

dot). A “tiger trial” ended when either of the participants opened the door. Prediction, choice,

social-observation, and physical-observation/outcome (all 5sec. duration) screens were all separated

by the inter-event-interval (1sec.+ ∼ 600ms.).

2.3.3 Differences in the Original and Modified TT

The original payout structure is taken from Doshi and Gmytrasiewicz formulation of the multiagent

Tiger Problem and their solutions using POMDP and I-POMDP frameworks [21, 12]. In the single-

agent version, an L action costs the participant −1 point (Figure 4). This is comparatively a small

price to pay to get the reward of +10 points on getting the gold-pot. However, encountering the

tiger punishes the participant quite harshly by taking away −100 points. The payout structure of the

multiagent version of the task is envisioned such that the participants get their reward plus or minus

half the reward of the other in the cooperative and competitive context respectively.

Verbal and written reports from participants completing the ITT with the original payout structure

highlighted the demotivating effect of opening the wrong door. That is, the losses were so large that

some participants thought they could never make up for one loss with just such small gains for opening

the correct door on subsequent rounds. Therefore, we modified the payout structure in the following

way: gains are doubled, and losses are halved. This can be easily recognized, except for the L action,

which still incurs a cost of −1 point (Figure 4). Doubling the gain (+20 points), and halving the

losses (−50 points) decreases the severity of the punishment and the loss-to-gain ratio, thus keeping

the participants more engaged. The payouts of the ITT were also changed accordingly (see section 2.4

below), and we used whole numbers to make it easier for the participants to keep track of rewards

and reward totals.

Besides the differences in the payouts, in the modified TT, the participants were trained in the single-

agent version of the task for 10 trials, and on the ITT (cooperative or competitive, depending on

random assignment) for 20 trials.
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2.4 Payouts

We will describe the payout structure of the modified TT here. To make it simpler, the payout

structure in Figure 4 is for the scenario where the tiger is behind the left door; Changing the rows and

columns of OL and OR would represent the tiger behind the right door. For the sake of convenience,

we will call the two participants X and Y. We will refer to a particular cell in the payout matrix by

its row and column number; As an example, row 1 column 2 would be {1,2}.

Payout in the single-agent version is straightforward, where the listen action costs the participant a

single point {1,1}. When the participant opens the correct door {1,3} the reward is +20 points while

encountering the tiger {1,2} incurs a loss of -50 points.

Payouts in the modified matrix in the ITT departed from the original matrix, which are calculated by

adding (in the cooperative context) or subtracting (in the competitive context) half of the single-player

payouts (see Figure 4A). In contrast, modified payouts in the cooperative context of the multiagent

version are completely symmetric to foster cooperation via shared outcomes. When the participants

gather evidence through a listen action {1,1}, they lose −1 points each. The optimum scenario is

when both open the correct door on the same round {3,3}, gaining the maximum +20 each. Other

scenarios are relatively sub-optimal which incur losses. These moderate losses motivate participants

to learn and look for the right door in subsequent trials. The worst scenario is when both participants

get the tiger, losing −50 points each.

Figure 4: Original and modified payout structures of the TT and ITTs. The payouts are potential points that

can be gained for a chosen action (listen (L) and open-left/right (OL/OR)), when the tiger is behind the left

door. The points scheme remains the same for the tiger behind the right door if we switch the OL and OR

columns and rows. In the original matrix for the single-participant setting, a L action costs -1 points. Getting

the gold-pot rewards +10 points while encountering the tiger takes away -100 points. In the multiagent setting,

the column actions represent one’s own actions, while the row is the other participants’ actions. The point

system is similar from the single-participant setting but more combinations are added as the other participants’

actions affect the points a participant can make. Depending upon the context, the points a participant gains are

their own points plus half the points of the other participant (cooperative context) or minus the points of the

other participant (competitive context). In the modified matrix single-participant setting the gains are doubled

to +20 points and the losses are halved to -50 points. The multiagent setting has simpler whole numbers and

the differences in the points is comparatively less extreme. To facilitate more cooperation in the cooperative

context, the payout in the modified matrix is completely symmetric.
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The main diagonal in the competitive context payout structure is similar to the cooperative one. Both

participants’ gathering evidence costs each −1 points. The best-case scenario for X is to open the

correct door when Y opens the wrong door {2,3}; This results in a big win (+45 points) for X, along

with a bad loss (−60 points) for Y. The payout structure also incentivizes a participant if the other is

wrong, fostering competition to be the first one to the correct door.

2.5 Indices of behavioral performance

Our goal in this paper is to characterize participants’ performance on the TT and on the ITT in two

interactive contexts, cooperation and competition. We do this in terms of assessing the sequences

and proportions of participants’ choices, along with their predictions about the actions of the other

participant. We also aim to understand how other-regarding predictions relate to an agent’s choices

by correlating the prediction and choice data. Finally, we also want to reveal learning-related changes

and the ensuing improvement in task performance as both participants in the ITT learn about each

other’s choices and make better predictions.

We derived several behavioral indices from the choice and the prediction data of the ITT. In this

section, we explain how they relate to the interactive contexts and what ToM processes they sug-

gest.

Number of listen actions. One important characteristic of choices in both the TT, but more so in

the ITT, is the degree to which human agents seek information prior to acting. We operationalize this

via the number of listen actions prior to an open action, which concludes a tiger-trial. In this respect,

the number of listen actions can be interpreted as a data-driven index weighing uncertainties of reward

with those of failure/loss. The number of listen actions should follow the incentivizing structure of the

payout matrices in the different interactive contexts. Using I-POMDP modeling with the multiagent

Tiger Problem [21, 24], allows us to determine optimal numbers of L actions depending upon two key

parameters of I-POMDP models: the ToM level and the planning horizon (see work by Doshi [24] for

complete modeling details and definitions of level and planning horizon). In brief, ToM “level” (see

[20]) applies to the level of recursion of Agent A’s model of Agent B’s beliefs, intentions, values, etc.

Level 0 ToM is defined as no ToM at all. Level 1 ToM is defined as basic ToM with no recursion, such

that Agent A does have a model of Agent B’s beliefs, intentions, values, but has no model of Agent

B’s model of Agent A. Level 2 ToM is defined as a recursive model, in which Agent A has a model

of Agent B’s beliefs, intentions, values along with a model of Agent B’s model of Agent A’s beliefs,

intentions, values, etc. Levels of ToM above 2 are higher levels of recursion.

The planning horizon in such models refers to number of iterations from the current round whose

estimated outcome probabilities influence the choice of action. Horizon 1 means that the model takes

account only of the current round’s expectation. Horizon 2 means that the model looks one iteration

ahead, and so on. We apply previously established models to provide optimal numbers of L actions

for both the ”Level 1, Horizon 1” (L1H1) and ”Level 1, Horizon 2” (L1H2) models.

Evidence difference. Computational modeling reveals that several L actions are needed to grad-

ually build up a belief about the tiger’s location because the physical observations in the TT (tiger

growls) are only partial observations of the tiger’s true location and are only 70% accurate. Thus, the

average evidence regarding the tiger’s location prior to an agent’s open action operationalizes that

agent’s evidence threshold and allows an estimation of deviation from computationally optimal evi-

dence accumulation. We calculate the evidence difference as the number of observations from the true
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location of the tiger minus the number of observations from the other side (e.g. if the tiger is on the

left (TL), the evidence difference is calculated as (nGL|TL)− (nGR|TL), where n stands for number

and | for conditionality). Compared to the number of Listen actions the evidence difference effectively

controls for the inconsistency in an observation sequence that arises from the probabilistic nature of

the physical observations. We calculate the evidence difference for every tiger-trial and average them

to obtain the subject-specific evidence threshold before an open action is committed.

Identical open actions. This measure provides the most direct link to the incentivizing structure

of the payout matrices for the interactive contexts. During cooperation, the best outcome is to

open the correct door together and the worst outcome is to open the tiger’s door together. During

competition though, it is best to make it to the correct door first, and even better if the other person

chooses the wrong door. So competition includes disincentives to identical open actions. Because

they are such a direct expression of contextual differences in the ITT, identical open actions lend

themselves particularly well for demonstrating learning-related improvements of joint performance on

the ITT.

Correct open actions. Wins or losses are the results of correct and incorrect open actions in the

TT and ITT. The number of correct open actions is therefore a measure of how well human agents

have understood and carried out the task, along with the quality of evidence on which those agents

base their actions.

While the above-mentioned measures characterize aspects of participant choice, their prediction data

on the ITT provide indirect assessment of their ToM processes. A requirement for the most successful

task performance in the ITT is that agents build mental models of the other participant, which they

can query implicitly or explicitly to predict the other participant’s next action. To partially access

and assess these representations, we used several behavioral indices from the prediction data.

Number of listen predictions. Paralleling the number of listen actions, the number of predicted

listen actions or the number of listen predictions indicates how much evidence a participant thinks the

other participant needs before committing an open action. Just as with the number of listen actions

above, the number of listen predictions can be interpreted as the expected risk sensitivity of the other

participant. Similarly, if the number of listen actions is expected to be higher during cooperation, the

same holds for the number of listen predictions as cooperatively playing participants with a higher

need for evidence would expect the same from their co-participants, because they know that their

co-participants are also aiming to coordinate the actions of both participants.

Prediction accuracy. This is clearly the purest behavioral measure of the veracity of a participants’

mental model of the other participant: if one participant can accurately predict the other participant’s

actions, then the mentalizing capacity is clearly successful. Prediction accuracy can be also seen as an

expression of a successful Level 1 or higher ToM agent [20]. Such an agent is capable of representing

what the other participant believes about the tiger’s location and the other participant’s expected

values for actions.

Consistent actions. We define consistent actions as those participant choices that logically follow

their predictions. For example, if a participant in a cooperative ITT believes that the other participant

believes that the tiger is behind the left door and that the other participant will open the door on

the right in the current round, the participant will predict open-right. If the participant also believes

that the tiger is behind the left door, then the participant should also open the right door on this
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round in order to maximize the probability of greatest reward. Of course, there will be rounds when

a participant believes that the other participant is wrong about the location of the tiger, but such

trials are expected to be infrequent. In the context of a cooperative ITT, where action coordination is

beneficial for both participants, consistent actions are an important behavioral strategy for successful

performance: if the participant predicts the other participant will choose a specific action, then he

increases his own predictability, if he chooses an action that is consistent with his own predictions.

As such consistent actions are a rudimentary indicator for Level 2 or higher ToM reasoning: if the

participants in the cooperative ITT know that they need to exactly coordinate their actions, then it

is beneficial for them to increase the predictability of their own actions. That is, assuming they are

Level 2, they choose a strategy that maximizes the chances that they can be predicted by a Level 1

ToM agent, who is trying to predict their behavior as if they were a Level 0 agent (i.e., they have no

ToM; they do not cognitively model another agent’s beliefs or values). Of course, such sophistication

of ToM reasoning is especially beneficial in the cooperative ITT and might prompt participants to

engage in this “deeper” recursion of ToM reasoning (see also Discussion in section 4).

Correctly predicted consistent actions. Consistent actions are predicated on the participant’s

predictions of the other participant and these predictions can be erroneous. Therefore, we also look

at a subset of consistent action, namely those in which the predictions of the other participant were

correct.

Thinking about the other agent’s potential choices and incorporating these predictions into one’s

own action selection process is cognitively demanding and requires considerable cognitive resources.

We therefore expect an increase in reaction time (RT), whenever participants think about the other

participant in detail. An important aspect of repeated social interaction in the ITT is that the

participants can learn the other’s decision strategies and choice preferences. We look at the learning-

related changes that this index brings to the ITT behavior.

In a final step, we wanted to link the prediction performance of the participant indicative of their ToM

process to their own choices and evaluate, whether successful predictions of the other participant also

resulted in better choices. We, therefore, provide several correlation analyses in which we link our

prediction measures with several of the choice indices from above.

2.6 Models of optimal performance

We aim to characterize the performance of our participants with respect to the performance of an

optimal agent on the TT and the ITT. The computational model for the TT is a partially observable

Markov decision process (POMDP), which has been introduced by Kaelbling et al. [12]. It is a

generic framework for decision-making under uncertainty, when agent do not have direct knowledge

to the state of the world, but only through probabilistic observations provided by the environment.

To accommodate such a decision-making scenario in an interactive context, Gmytrasiewicz and Doshi

developed interactive POMDPs (I-POMDPs) [13], a generalization of POMDPs to multiple interacting

agent, which allows for the modeling of the other agents’ beliefs and actions within the computational

model itself. In the following, we briefly describe these two frameworks and how they can solve the

TT and the ITT. For more details (including the equations defining the model) we refer the interested

read to the original publications [12, 13].
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2.6.1 POMDPs as a model for the single agent Tiger Task

In a POMDP an agent does not have direct knowledge of the state of the world. In the case of the

TT the two possible states of the world are “Tiger Left” and “Tiger Right” indicating the door, which

hides the tiger that should be avoided. However, each state emits probabilistic observations, which are

presented to the agent. In the case of the TT, these are the physical observation of “Growl Left” and

“Growl Right” indicating the location of the tiger with an accuracy of 70%. Using these observations

in a Bayesian belief updating scheme, the agent forms beliefs about the world in form of a probability

distribution over states specifying the probability of each state in the current trial. These beliefs,

which are updated in a so-called state estimator, are the basis for the decision of the agent, which

action to take next.

More formally, a POMDP is defined by:

• a set of state S, which define the environment

• a set of action A, which an agent can take in each state

• a state transition function T: S×A detailing the (possibly probabilistic) transitions between state

of the environment conditional on the specific action

• a reward function R: S×A detailing the immediate reward that an agent obtains when selecting

action a in state s

• an observation function O: S×A detailing the probability distribution of observations which the

agent can make after performing action a in state s

The model performs Bayesian belief updating in the state estimator, which calculates the new beliefs

of the agent based on the current state (unknown to the agent), the last action, and the observation

that the agent has made. These updated beliefs (about the location of the Tiger) are the basis for

the next action decision. These beliefs are filtered through softmax function (a sigmoid function)

transforming beliefs into action probabilities, which are the model’s predictions for the next action by

the agent.

We used a the POMDP implementation pomdp-solve by Toni Cassandra (code available at http:

//www.pomdp.org to solve the TT using both the original and modified payout structure. The solver

provides and optimal solution to POMDP in form of a policy graph that specifies the optimal action

sequence given a specific observation and a particular belief. Specifically, we focused on the number

of listen action that the optimal agent would take (given the observation sequence of the participants

in each trial and compared this to the actual number of listen action of the participants (averaging

both over trials). In the case when the optimal agent reached an open action before the participant,

we took the preceding number of listen action as the optimal number for this trial; in the case, when

the participant committed and open action before the optimal agent, we simulated 30 additional

observation sequences using the observation probabilities defined in the TT and recorded the number

of listen actions (averaging over these simulations).

2.6.2 I-POMDPs as a model for the multi-agent Interactive Tiger Task

An interactive POMDP (I-POMDP) generalizes the POMDP framework to a multi-agent setting, in

which two or more agent simultaneously take actions in an uncertain environment. This is a new

level of complexity, because now the action of the other player(s) have to be taken in account when
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calculating the next action. To solve this problem in a optimal way, the I-POMDP creates a model of

the other players, which calculates their beliefs and action probabilities and then uses these simulated

beliefs to compute the agent’s optimal action. Thus, an I-POMDP defines an “model within a model”

and is thus a computational vehicle for assessing mentalizing in a quantitative way.

More formally, an I-POMDP has the same defining elements as a POMDP except that the set of state

S is replaced by a set of interactive states IS: S×M, which is the interaction of the states with the

possible models M of the other agent(s). These M models individually also contain the main agents’

models which recursively do the same and so on. When calculating the beliefs, the I-POMDP first

calculates the possible beliefs of the other agent(s) given the observations that the other agent(s) make,

and then marginalizes over the other agents’ beliefs to compute the own belief update. This is then

filtered again through a quantal response equilibrium function to obtain action probabilities for the

next decision. For more details on the I-POMDP and the implemented quantal response equilibrium

function, please see [13, 25].

Including a model of the other agent in the belief update of the I-POMDP raises the question of the level

of recursion of these “models within models” [26, 27]. A Level 0 I-POMDP agent (essentially a POMDP

agent) does not have a model of the other agent and learns only from the observed environment. A

Level 1 I-POMDP agent constructs a model the other agent as a Level 0 agent, so the first agent

thinks that the other agent does not have a model of the first agent. A Level 2 agent builds a model

of the other agent as a Level 1 agent, which includes a model of the first agent as a Level 0 agent. In

summary, a Level n I-POMDP agent constructs a model of the other agent at the Level n-1. The level

of recursion in the I-POMDP affects how the I-POMDP agent calculates and anticipates the other

agent’s actions.

Another important determinant of the belief update in the I-POMDP is the planning horizon. The

value iteration algorithm that is used to solve the I-POMDP iterates over the number of planning steps

while marginalizing over all possible own and other actions to calculate and update beliefs for the next

decision. Especially for tasks like the ITT, in which there are several evidence-gathering steps, the

valuation of actions, which are based on the beliefs, can be significantly affected by the number of

steps the algorithm is allowed to look ahead while considering all possible joint actions.

For the comparison of the performance of our participants on the ITT with that of an optimal agent,

we used a similar strategy than for the single-agent TT. However, due to high computational demand

of the I-POMDP and optimal solution using value iteration [28] is commonly not possible. Hence,

the optimal solution has to be approximated. We used an interactive particle filter implemented in

C++ [29, 21] to approximate optimal performance given the actual observation sequences that our

participants experienced. We also limit the optimal I-POMDP agent to be a Level 1 agent with a

planning horizon of either 1 or 2 steps with 1000 particles.

As in the case of the single-agent TT, whenever the I-POMDP reached an open action before the

participant in a particular trial we took this as the optimal number of listen actions for this trial;

however, when the participant committed an open action before the I-POMDP, we simulated 30

possible observation sequences based on the observation probabilities of the ITT and recorded the

number of listen action until the I-POMDP reached an open action. Then we average over simulations

to obtain the optimal number of listen action for this trial. Finally, as in the case of the single-agent

TT and the POMDP we averaged across all 30 tiger trials to obtain a subject-specific number of listen

actions.
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2.7 Statistical analyses

All the statistical tests were performed in R version 3.6.1. For comparisons of the means of the

interactive contexts, we performed an independent Welch two-Sample t-test between the sample means

and report the t-value, degrees of freedom, p-value, the 95% confidence interval and the effect size

with Cohen’s d-value. We also corrected for multiple comparisons using Bonferroni corrections, setting

the criteria for the significance at the value of p < 0.006 (0.05/8). For the comparison between the

optimal POMDP model and the participant behavior we performed a two-way mixed effects ANOVA

treating participant behavior and the optimum POMDP model as the within-subject factor and the

two matrix versions as the between-subject factor. Similarly, another two-way mixed effects ANOVA

treating participant behavior and the optimum I-POMDP model as within-subject factor, and the two

contexts as the between-subject factor was performed for the multiagent ITT.

For the comparisons of learning effect through sessions between contexts, we performed two-way mixed

effects ANOVA treating session as a within-subject factor and context as a between-subject factor with

significance set at p < 0.05. From the ANOVAs we report the F-statistic degree of freedom between

and within, the F-ratio and the p-value. Differences in the correlation coefficients were tested at the

significance level of p < 0.05 using Fishers’ z-transformation by calculating the z observed value.

zobserved =
(z1 − z2)√

(1/N1 − 3) + (1/N2 − 3)

Where, z1 and z2 are the Fisher z-transforms of the two correlation coefficients, while N1 and N2 are

their respective sample sizes. Statistical significance at the 5% level is achieved when this value is to

be beyond a critical threshold of ±1.96. A zobserved beyond the critical threshold is an indicator of

significance and the rejection of null hypothesis.

3 Results

3.1 Single-agent version

We characterized the performance on the single-agent version of the tiger task (TT) on 3 indices:

number of listen actions, evidence-difference, and percentage of correct open actions. (Please refer

to section 2.5 describing the behavioral indices in more detail.) Because every participant completed

the TT and this version only contains physical, or state, observations (tiger growls) without the

complexities of social interactions and mentalizing, it provides the best context for studying the effects

of the original and modified version of the payout matrix. Figure 5 shows the results.

We observed a difference (t(90.96) = 3.45, p = 0.86 × 10−3, 95% CI [0.43, 1.58],Cohen d = 0.56) in

the number of listen actions between the two different version of the TT. Participants in the modified

version (mean±s.d. : 3.82±1.31) required significantly fewer listen actions than in the original version

(4.82± 2.16) before committing an open action. Dissecting the number of listen actions into the two

different observations (tiger growl left or right) that the participants could make, we found a smaller

evidence-difference in the modified (2.05 ± 0.55) than in the original TT (2.43 ± 0.80, t(98.19) =

3.48, p = 0.76 × 10−3, 95% CI [0.16, 0.60],Cohen d = 0.56). This is likely reflective of the larger risk

associated with the original TT due to a larger loss following an incorrect open action. Surprisingly,

we also saw a significant difference pointing to a comparatively better performance in the modified

version in terms of correct open actions (t(158.89) = −2.57, p = 0.011, 95% CI [−0.59, 0.01],Cohen

d = 0.38; See Figure 5).
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Figure 5: Behavioral indices comparison of the single-agent version of the TT. This Figure compares the

participants’ performance difference in the original version with the modified version of the payout matrix.

It shows the mean values with their distributions in the form of the split violin plot. The black bars cover

the interquartile range. The number of listen actions and the evidence-differences are significantly lower in

the modified version. The number of correct open actions also was higher in the modified version, indicating

the participants found it informationally easier or less risky to work with the modified version of the outcome

matrix.

Figure 6: Comparison of actual and optimal number of listen action in the single-agent TT. Each dot represents

a participant characterized by his actual (x-axis) and optimal (y-axis) number of listen actions averaged across

all tiger trials. Whereas the optimal POMDP Level 1 model overestimates the number of listen action for the

original payout matrix, is underestimates it for the modified payout matrix. In figure inset, we see main effects

of the type of matrix, the participant behavior/simulation, and the interaction effect between them.

Did the performance of the participants deviate from the performance of the optimal POMDP agent?
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We observed a stark difference between the original and the modified payout matrix in the TT (see

Figure 6). For the original payout matrix the optimal POMDP solution consistently overestimated the

participants’ number of listen actions (mean nListen: POMDP 7.20 ± 1.14, participants 4.82 ± 2.16,

t(98.29) = −7.91, p = 3.97×10−12, 95% CI [−2.98,−1.78],Cohen d = 0.97). However, for the modified

payout matrix the POMDP underestimated the participants’ actual number of listen actions (mean

nListen: POMDP 2.82 ± 0.46, participants 3.82 ± 1.31, t(152.71) = 8.01, p = 2.67 × 10−13, 95% CI

[0.75, 1.24],Cohen d = 0.72). Using a 2-way mixed-effects ANOVA with the within-subject factor as

participant behavior and optimal POMDP, and the between-subject factor as the original and modified

matrix, we observed the main effect of the type of matrix (F (1, 374) = 308.41, p < 2.00× 10−16), the

participant behavior and simulation (F (1, 374) = 24.33, p < 1.22×10−6), and also an interaction effect

between them (F (1, 374) = 121.76, p < 2.00× 10−16) (see Figure 6 inset).

3.2 Multiagent version

In the main text of this paper we focus on the results with the modified payout matrix of the multiagent

ITT. All subsequent findings in this section therefore, refer to the modified ITT. However, we provide

results from the original payout matrix in the supplement as these findings may be of interest for the

wider community using the published version of the multiagent Tiger Problem for model development

and simulations.

3.2.1 Interactive effects on choice indices

We first examined the effect of the interactive context on the choice indices defined above in section

2.5. We observed a significant effect on number of listen actions (t(102.49) = −4.54, p = 1.6 × 10−5,

95% CI [−2.76,−1.08],Cohen d = 0.82), which was higher in cooperation (mean ± s.d.: 5.16 ± 1.93)

than in competition (3.23± 2.67) (see Figure 7). This suggests that cooperative participants engaged

in prolonged evidence gathering in forming their estimates of the tiger location. Comparing the

number of listen actions to the single agent TT, we saw a significant difference in ITT cooperation

(t(97.59) = −5.04, p = 2.155 × 10−6, 95% CI [−1.86,−0.81],Cohen d = 0.57), while not in ITT

competition (t(70.13) = 1.58, p = 0.12, 95% CI [−0.15, 1.32],Cohen d = 0.20). Under cooperation,

participants knew that maximal reward was achieved by coordinated open actions, and so they would

not have had incentive to race one another to the door. Conversely, under competition, participants

were expected to view the task as a race so as to beat the other participant to the correct door and

receive maximal reward. That is, participants would have likely underestimated their own probability

of opening the wrong door by overestimating the weight of loss if their competitor would have opened

the correct door.

This was paralleled by a significant effect on evidence difference between interactive contexts. In the

competitive context, the participants preferred to open the door with less evidence (1.56±0.57) than in

the cooperative context (2.32±0.60) (t(121.14) = −7.12, p = 8.2×10−11, 95% CI [−0.96,−0.54],Cohen

d = 1.28), pointing towards increased coordination during cooperation and increased risk-taking during

competition. These difference were significantly less when compared to the TT (t(58.83) = −3.80, p =

3.5×10−4, 95% CI [−2.05,−0.63],Cohen d = 0.61) and more (t(69.09) = −12.49, p < 2.2×10−16, 95%

CI [−3.50,−2.53],Cohen d = 0.33) for the competitive and cooperative context respectively.

We further observed a higher percentage of identical open actions in the cooperative (0.40 ± 0.20)

compared to the competitive context (0.32 ± 0.13, t(113.36) = −2.86, p = 4.9 × 10−3, 95% CI
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[−0.15,−0.03],Cohen d = 0.51) suggesting that participants in the cooperative context, which in-

centivized action coordination, increased successful coordination.

Figure 7: Interactive choice behavioral indices’ comparison of the multiagent version of the ITT (modified

payout only), competitive and cooperative contexts. The figure shows the mean values with their distributions

in the form of split violin plots. The black bars cover the interquartile range. The number of listen actions and

the evidence-difference are significantly higher in the cooperative context, indicating greater evidence gathering

for coordination in the task. The percentage of identical open actions was also significantly higher in the

cooperative context which translated in the higher correct open actions as well.

Finally, we also found a significant difference in the percentage of correct open actions, which was again

higher during cooperation (0.85±0.11) than competition (0.71±0.13, t(111.55) = −6.38, p = 4.2×10−9,

95% CI [−0.18,−0.09],Cohen d = 1.15). This suggests that participants in the cooperative context

might have been able to utilize their longer evidence gathering (number of listen actions) effectively

for more successful open actions.

How did the performance of our participants deviate from optimal performance of an I-POMDP agent?

To answer this question we again focused on the number of listen actions and compared participant

performance to an I-POMDP agent with a planning horizon of 1 and 2 steps.

The Level 1, Horizon 1 (L1H1) I-POMDP with a 1000 particles was not able to discriminate be-

tween different number of listen action in the cooperative and the competitive context. It always

predicted an optimal number of listen action to be around 1.5 regardless of the interactive context

(see Figure 8A) with an initial belief of tiger being behind either of the doors at 50%. In contrast,

the Level 1, horizon 2 (L1H2) I-POMDP agent over- and underestimated the actual number of lis-

ten actions of the participants in a particular way: in the cooperative context it underestimated the

participants number of listen action (mean nListen: I-POMDP, 3.83 ± 0.39, participant 5.16 ± 1.93,

t(70.37) = 5.46, p = 6.8× 10−7, 95% CI [0.84, 1.81],Cohen d = 0.67), whereas in the competitive con-

text, it overestimated the participants’ number of listen actions (mean nListen: I-POMDP, 5.53±0.45,

participant 3.23± 2.67, t(60.27) = −6.46, p = 2.0× 10−8, 95% CI [−3.01,−1.59],Cohen d = 0.85) (see
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Figure 8B). Using a 2-way mixed-effects ANOVA with the within-subject factor as participant behavior

and optimal L1H2 I-POMDP, and the between-subject factor as context, we observed an interaction

effect (F (1, 242) = 72.72, p < 1.64× 10−15) (see Figure 8B inset). This suggests a distinctly different

pattern in the optimal I-POMDP agent than in the participants: the optimal agent would listen more

in the competitive context compared to the cooperative context, whereas for the participants this

pattern is reversed.

Figure 8: Comparison of actual and optimal number of listen action in the multiagent ITT. Each dot represents

a participant characterized by his actual (x-axis) and optimal (y-axis) number of listen actions averaged across

all tiger trials. [A] For L1H1, the optimal I-POMDP underestimates the number of listen actions in both the

contexts. The figure inset shows the interaction effects of the context. [B] While for the L1H2, the optimal

I-POMDP overestimates the number of listen action in the competitive context and it slightly underestimates

it in the cooperative context. The figure inset in [B] shows the context x data type interaction effect.

3.2.2 Interactive effects on prediction indices

In the next step we examined the effects of the interactive context on behavioral indices of predictions

(see Figure 9). These analyses also shed some light on the cognitive processes involved in modeling

the beliefs and choices of the other participant. We first compared prediction accuracies in both

interactive contexts. Participants exhibited more accurate predictions of the other participant in

the cooperative context (0.91 ± 0.45) compared to the competitive context (0.81 ± 0.08, t(89.47) =

−8.82, p = 8.6×10−14, 95% CI [−0.13,−0.08],Cohen d = 1.61), indicating that participants responded

to the demand characteristics of the cooperative ITT, which incentivizes precise coordination of actions

and hence a demand for accurate predictions of the other participant’s actions.

Paralleling the higher number of listen actions in the cooperative ITT, we also observed a higher num-

ber of listen predictions during cooperation (5.03±1.87) than during competition (3.00±2.34, t(109.04) =

5.29, p = 6.42 × 10−7, 95% CI [−2.80,−1.27],Cohen d = 0.96). As cooperating participants demon-

strated longer evidence gathering before an open action, they may have projected the same tendency

onto their co-participants, leading to a higher number of listen predictions.
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Similarly, we also found a higher percentage of consistent actions during cooperation (0.98±0.03) than

competition (0.90 ± 0.08, t(67.79) = −7.50, p = 1.8 × 10−10, 95% CI [−0.10,−0.06],Cohen d = 1.38).

This is consistent with an expectation that participants would act more predictably during cooperation

than competition. As explained in Section 2.5, this can be interpreted as rudimentary for sophisticated

Level 2 ToM reasoning, as the cooperating participants may take the perspective of a Level 1 ToM

participant and act in a way that would help the Level 1 ToM participant be successful at coordinating

their actions with the participant. Moreover, we also observed that among the consistent actions, those

that were correctly predicted for the other participant were higher during cooperation (0.90 ± 0.05)

than competition (0.75 ± 0.10, t(80.77) = −10.06, p = 6.8 × 10−16, 95% CI [−0.18,−0.12],Cohen

d = 1.85).

Figure 9: Interactive prediction behavioral indices: comparison of the competitive and cooperative ITT. Mean

values with their distributions in the form of split violin plots. The black bars cover the interquartile range. The

number of listen predictions are significantly higher in the cooperative context. The higher prediction accuracy

in the cooperative ITT indicates that the participants were better able to anticipate the others’ choice behavior.

Consistent actions and consistent actions following correct predictions of others’ choices are important criteria

in achieving favorable outcomes in the cooperative context, as seen with significantly higher percentages during

cooperation.

This line of interpretation is supported by an analysis of RTs for consistent and non-consistent action in

both interactive contexts. After log-transforming the RTs to approximate a Gaussian distribution, we

used a 2-way mixed-effects ANOVA with the within-subject factor action consistency and the between-

subject factor context. We did not observe any main (F (1, 115) = 0.78, p = 0.78) or interaction effect

(F (1, 115) = 3.24, p = 0.074) (see Figure 10A) with higher RTs for non-consistent actions in the

cooperative ITT (6.68 ± 0.36) compared to consistent actions (6.60 ± 0.26). RTs for both types of

actions were comparable in the competitive ITT (consistent actions: 6.64±0.25, non-consistent actions

6.60± 0.26).

Subsequently, we sub-divided RTs for consistent actions into those associated with correct and incor-

rect predictions in both interactive contexts. A 2-way mixed-effects ANOVA showed a main effect
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of prediction accuracy (correctly predicted consistent actions: 6.64 ± 0.23, incorrectly predicted con-

sistent actions: 6.59 ± 0.25, F (1, 122) = 15.42, p = 0.143 × 10−3), but no main effect of context

(F (1, 122) = 0.29, p = 0.592) and no interaction (F (1, 122) = 0.02, p = 0.888) (see Figure 10B). This

is consistent with the notion that accurate mentalizing about the other participant, which likely leads

to accurate predictions, requires more cognitive resources, leading to longer RTs regardless of the

interactive context.

Figure 10: Comparison of RTs. [A] RTs for consistent and non-consistent actions. Using 2-way mixed effects

ANOVA we observed no interaction effect of the context and the consistency of actions. [B] RTs for correctly

and incorrectly predicted consistent actions. Using 2-way mixed effects ANOVA we observed a main effect of

accuracy, and no interaction effects. All error bars show mean +/- the standard error.

3.2.3 Relating choice and prediction indices

To answer the question of whether better prediction accuracy resulted in improved dyadic coordina-

tion and in improved overall performance, we related the differences in prediction performance in the

two contexts to the choice performance of our participants (Figure 11) We observed a high correlation

between the prediction accuracy and the identical actions in all participants (cooperative: r = 0.90,

95% CI [0.84, 0.94]; competitive: r = 0.76, 95% CI [0.62, 0.85]) suggesting that better prediction per-

formance improved the coordination of actions. The correlation coefficients are significantly different

(zobserved = −2.55, p < 0.05) (Figure 11A ). We also observed significant correlation between prediction

accuracy and identical open actions (cooperative: r = 0.61, 95% CI [0.43, 0.74]; competitive: r = 0.46,

95% CI [0.22, 0.64]), but no difference (zobserved = −1.14) due to ITT condition (Figure 11B).

To investigate the link between listen actions and listen predictions we correlated the number of listen

actions and the number of listen predictions, finding associations in both ITT conditions (cooperative:

r = 1.00, 95% CI [0.99, 1.00]; competitive: r = 0.99, 95% CI [0.99, 1.00]), and found no difference

between them (zobserved = −1.33). However, we saw greater individual variability in the competitive

context than in the cooperative context, indicating a higher mismatch between the participants pre-

dicting the other participants’ action choices (Figure 11C). Taken together these analyses are consistent
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with the expectation that prediction and choice performance are closely related in both interactive

contexts, but that cooperation elicits a stronger relationship between prediction and choice.

Figure 11: Correlations relating choice and prediction indices. We observed significant correlation between [A]

prediction accuracy and identical actions with significance between the contexts. We also observed significant

correlation between [B] prediction accuracy and identical open actions and between [C] the number of listen

actions and number of listen predictions.

3.2.4 Learning-related improvement in task performance

We expected that participants would learn about the other participants’ preferences and beliefs

through repeated interactions in the ITT, so we should therefore observe a change in these indices

across all three sessions. Figure 12 shows that most learning occurred between sessions 1 and 2.

Figure 12: Learning in the ITT. [A] Identical open actions and [B] correctly predicted consistent actions over

the course of sessions. Using 2-way mixed effects ANOVA, in [A] we observed a main effect of context and

a significant interaction indicating that participants in the cooperative context learn to simultaneously open

the door through subsequent sessions, compared to the competitive context. In [B], for the correctly predicted

consistent actions we see a similar effect of context and session. Error bars are s.e.m.
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Paralleling our findings on identical actions in Figure 7, we saw a main effect of cooperation vs.

competition on identical open actions (F (1, 122) = 6.04, p = 0.015), with higher numbers of iden-

tical open actions during cooperation, increasing over sessions (interaction effect context x session

F (2, 244) = 3.69, p = 0.026).

The number of consistent actions with correct predictions also diverged between contexts over the

course of the sessions (interaction effect context x session F (2, 244) = 4.16, p = 0.017). While this

index increased slightly during cooperation, it substantially decreased during competition F (1, 122) =

115.2, p < 2×10−16. This is consistent with the expected demand characteristics of the two versions of

the ITT. During cooperation the participants tried to be as predictable as possible to ensure the best

chances for coordinated actions, while during competition they aimed to be unpredictable to ensure

that they would not lose to the opponent.

4 Discussion

We adapted the single- and multiagent Tiger Problem to create a single-agent Tiger Task (TT) and

multiagent, interactive Tiger Tasks (ITT), to better understand how human agents depart from com-

putationally optimal solutions under conditions of uncertainty and partial observation. We have

provided the first empirical report of data from human participants on single and multiagent ver-

sions of adaptations of the Tiger Problem. The Tiger Problem is an iconic challenge in the artificial

intelligence community as it seeks to develop sophisticated models for planning under uncertainty

specifically for adaptive interactions with other agents [12, 21]. These models (POMDP/I-POMDP)

capture the belief updating process, in which the agent has only partial access to information about the

current state that is relevant to probabilistic rewards, manipulating the factors of both interactivity

and uncertainty [20].

Along with assessing how human behavior departs from that consistent with normative models, the

goal of this paper was to characterize the empirical choices of human participants and their predictions

of the other agents’ actions, using only model-free behavioral indices. These indices revealed a number

of important differences (discussed below) between the performance of the single agent and multiagent

task and between the cooperative and the competitive ITT. Importantly, these empirical, model-free

findings can serve as targets for posterior predictive checks for a more detailed modeling of beliefs and

valuations in subsequent work. Also we will further explore the neural underpinnings of the interactive

social decision making underpinning behavior in our newly designed tasks [30, 31].

Participants completed one of two single-agent versions of the TT that differed in the size of the

outcomes as prescribed by the fixed payoff matrices. Subsequently, they engaged in either a cooperative

or a competitive version of the ITT, which differed in the relative size of the outcome given specific

joint actions. The cooperative ITT favored strictly coordinated actions (i.e. identical actions), whereas

the competitive version of the ITT favored making correct open actions before the other participant,

and yielded the greatest reward when an agent opened the correct door as the other agent opened the

door to the tiger.

In the TT, we found that reduced risk of loss in the modified payout matrices increased how well the

optimal model matched the number of listen actions from human agents (Figure 6). This is consistent

with our hypothesis that participants underestimated their probability of loss while overestimating

the weight of the small losses incurred by listening [32, 33].
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As expected we found higher scores of the cooperative participants on most of our indices of choice

and prediction performance in the ITT (Figures 7 and 9). Cooperation elicited more listen actions

and more predictions of listen actions. These findings associated with higher prediction accuracy

and a higher proportion of identical actions and correct open actions in cooperation compared to

competition. These results suggest that participants adopted successful strategies more often in the

cooperative version of the ITT. Strict coordination of action in the cooperative context, especially

of open actions, requires accurately assessing when one’s own belief about the location of the tiger

matches the belief of one’s co-participant. This would be achieved by prolonged evidence gathering,

leading to an increased evidence differences observed in the cooperative ITT, which is a measure of the

consistency of the evidence of the tiger location. Likely due to the longer evidence-gathering phase,

participants in the cooperative ITT were more successful at opening the correct door. In contrast,

participants playing the competitive ITT were characterized by a shortened evidence-gathering phase,

consistent with the notion that they raced one other to the door, which comes at the price of a smaller

number of correct open actions. These participants also showed evidence of learning to avoid identical

open actions.

Comparing human behavior with simulations of optimal performance as generated from an I-POMDP

reveals several interesting differences in the number of listen actions per tiger trial. While the partic-

ipants committed more listen actions in the cooperative context (Figure 7) than under competition,

horizon 1 models (L1H1) predict no such difference. This suggests that human participants did not

simply rely on information in the current round and perhaps used deeper levels of recursive thinking to

guide their actions. Modeling will allow us to test these possibilities. On the other hand, the horizon

2 models (L1H2) show that it is optimal to listen more under competition and less under cooperation,

which is the opposite pattern seen for human participants (Figure 8B, inset).

There are two possible explanations for this difference. One proposal says that participants did not

engage with the other participant in their dyads at all and only paid close attention to their own

marginal utilities in the payoff matrices. Figure 4 shows that a listen action under competition has

a positive marginal utility of +14 points in the modified payout matrix, whereas under cooperation

a listen action has a marginal utility of -16 points. Competition also yields a much larger marginal

utility for correct open actions (+95) compared to cooperation (+15 points). The differential for listen

actions increases the value of listen actions during competition, which should lead to longer stretches

of listen actions under competition, as predicted by the L1H2 model. If human agents departed from

optimality by attending only to gains and not at all to losses, however, and if they ignored the presence

of the other participant in their dyads entirely, the marginal utilities of listen and correct open actions

would drive them to listen less under competition than under cooperation. Such an interpretation

would suggest biased processing of reward information in humans, such that loss probabilities would

be discounted completely. This result would challenge Prospect Theory, one of the most prevalent

theoretical accounts of human decision-making [34]. This proposal predicts that participants’ actions

would be best modeled by eliminating ToM and remaining with L0 models, given the inattention

to dyadic partners and exclusive attention to marginal utilities of listen actions and correct open

actions.

An alternative proposal is consistent with the notion that the participants did attend to and take

account of the presence of dyadic partners during interaction. In this proposal, competition leads

participants to overestimate the probability that the dyadic partner will reach the correct door first
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and so to overestimate the probability of the associated larger losses, while also overestimating the

small losses incurred by listening. Overweighting losses and underweighting gains is consistent with

Prospect Theory. Additionally, this alternative proposal predicts that participants’ actions are not

well modeled unless one uses at least L1 ToM, given the attention to dyadic partners. Future modeling

with I-POMDP models will allow direct assessment of whether L0, L1, or deeper levels of recursive

ToM best account for participants’ actions.

Examining the data regarding predictions provides an indirect or oblique assessment of possible ToM

processes. As expected, cooperation elicited higher prediction accuracy than did competition, which

was likely related both to the prolonged evidence-gathering phase during cooperation and to increased

consistency of action among participants under cooperation. The higher number of listen predictions

in the cooperatively playing participants also associated with increased action coordination.

Asking participants to predict the other participants’ actions – a novel task element that was not part

of the multiagent Tiger Problem – was intended to elicit explicit ToM processes. Increased prediction

accuracy is an indirect measure of the success of this putative cognitive activity. It can be interpreted

as the first step towards the recursive ToM thought process, where ”I think that you think...” becomes

”I think that you think that I think...” and so on. Although cooperation led to greater accuracy in

predicting other participants’ actions, this is likely to be primarily due to prolonged evidence-gathering

via listen actions, and not primarily due to cooperation facilitating better social cognition via ToM

per se. However, our future work will directly test whether cooperation does facilitate better ToM, in

addition to leading to greater evidence gathering.

An interesting aspect of the predictions are the consistent actions, in which participants chose the

same action that they predicted for the other participant. Consistent with our hypotheses, cooperation

elicited more consistent actions than competition. This can be interpreted as an effect of the incentives

for coordinated actions in the cooperative payout matrix, but it could reveal an interesting further step

in a recursive hierarchy of ToM processes. Through consistent actions, a participant in a cooperative

dyad increases their own predictability for the other participant, so as to maximize the chances that

they will end up choosing incentivized identical actions. This may indicate that participants adopt the

perspective of the other participant and think about what action they themselves should take to make

it easier for the other participant to choose the same action. However, the mere fact that cooperatively

playing participants chose more consistent actions does not definitively indicate a higher level of ToM

processes. Our future work will explore this possibility in much greater detail using computational

models like I-POMDPs that can build ”a model within a model” of the other participant.

A further interesting aspect of the data is that during cooperation, participants exhibited shorter

reaction times for consistent compared to non-consistent actions. This would be expected if consistent

actions require less cognitive effort, since they are aligned with their strategic goals in the cooperative

ITT (namely to be predictable in their action selection). Non-consistent actions violate these goals,

which may be the reason why it takes more effort and time to make them. However, the RT analyses

also revealed that among the consistent actions, people took longer when correctly predicting actions

of others. This suggests that successful reasoning about other participants’ actions requires more

cognitive resources and thus more time. There has been previous work exploring this in more detail

[35].

Participants learned during the ITT sessions. Namely, identical actions and correctly predicted con-

sistent actions increased during cooperation but decreased during competition. These learning-related
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changes suggest that participants in both interactive contexts learned to adopt the incentives implied

in the respective payout matrices. During cooperation participants learned to coordinate their actions

and improve their own predictability as they learned to adapt to their co-participants, whereas during

competition, participants learned to become less predictable.

In conclusion, our study is the first to provide empirical data from human participants as they engage in

adaptations of the single-agent and cooperative and competitive versions of the multiagent, interactive

Tiger Problem. Human agents departed quite distinctly from computationally optimal choices. These

deviations could have resulted from biased weights on losses and gains and/or on how competition and

cooperation differentially bias representations and expectations of others. Future attempts to move

from computationally optimal models of single agent and multiagent decision making [8] to applications

with human persons and groups should proceed with caution and with empirical behavioral data.

Otherwise, deployment of these technologies in real situations with real human beings will be less

successful than is possible or will fail completely.
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