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Abstract

The ability to form a Theory of Mind (ToM), i.e theorize about others’ mental states to
explain and predict behavior in relation to atttémiintentional states, constitutes a hallmark
of human cognition. These abilities are multi-facetand include a variety of different
cognitive sub-functions. Here, we focus on decigioocesses in social contexts and review a
number of experimental and computational modelpgreaches in this field. We provide an
overview of experimental accounts and formal comapomal models with respect to two
dimensions: interactivity and uncertainty. Therelyg, aim at capturing the nuances of ToM
functions in the context of social decision proess3Ve suggest there to be an increase in
ToM engagement and multiplexing as social cogniteeision-making tasks become more
interactive and uncertain. We propose that reptasgothers as intentional and goal directed
agents who perform consequential actions is eficibmly at the edges of these two
dimensions. Further, we argue that computationafletsoof valuation and beliefs follow
these dimensions to best allow researchers totefc model sophisticated ToM-processes.
Finally, we relate this typology to neuroimagingdings in neurotypical (NT) humans,
studies of persons with autism spectrum (AS), andiss of nonhuman primates.

1. Introduction

Humans are distinctly skilled at sophisticated abtiteractions. To successfully engage in
social exchanges, they rely on "Theory of Mind" Mo ToM is a concept defined by
Premack and Woodruff (1978) in the highly influahtarticle “Does the Chimpanzee have a
theory of mind?” as “an individual imputing mentatates [like beliefs, desires and
intentions] to himself and others [...] to make potidins, specifically about the behavior of
other organisms”. In their paper, Premack and Wafbdstressed that ToM need not be
accurate for it to be present (i.e., false infeemnoften do result from its presence and not
exclusively due to its absence). Further, theeddhtiated between ToM for motivation (i.e.,
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another organism’s valuation, intention, purpossl)gand ToM for knowledge (i.e., another
organism’s belief states or learned schemas/sgrigitong with this comprehensive
definition, Premack and Woodruff proposed an ihitesk to probe ToM capacities in
nonhuman primates: they presented short videosctirapanzee named Sarah of a human
struggling with simple tasks. Subsequently, Saralw ghotographs of various items,
including the one solving the actor’s problem. && ability to select the correct photograph
served as evidence of her being capable of recmgnthe problem (i.e., representing the
state of affairs, as well as the actor’s purposthéscene, so his intentions and goals). This
highlighted that having a Theory of Mind requireepresentation of the state of affairs and a
representation of an individual’'s purposeful andtivadional relationship to that state, i.e.,
the individual’'s beliefs and values/goals, respetyi, in the situation (Wimmer and Perner,
1983). ToM is thus not a unitary process. ToM &e&ad a category that includes at least two
differentiable social cognitive processes capalbleepresenting the first order beliefs and
first order values attributed to others, along witbbcesses for sharing and integrating these
representations.

Since this initial empirical investigation into ToMn nonhuman primates,
experimental approaches probing and characterizahM capacities have been introduced by
psychological and behavioral economics researchugeloand McCabe, 2014; Kovacs et al.,
2010; Schurz et al., 2014; Wimmer and Perner, 1988ural networks implicated in ToM
were successfully identified using standard neuagimg methods (Gallagher and Frith,
2003; Schurz et al., 2014; Siegal and Varley, 20@2irther, analyses of neural signals
increasingly drew on quantitative descriptions @fart cognitive processes constituting ToM
via computational models of behavior (Charpentiecd®oherty, 2018; Hampton, Bossaerts,
& O’Doherty, 2008; Hill et al., 2017; Xiao, Gengidgins, Chen, & Redcay, 2019; Yoshida
et al., 2010). Despite the vast success of thgsemaphes, a coherent picture of what ToM is,
how humans and other species engage in it, andhwiearal mechanisms constitute it, is
missing (Emery and Clayton, 2009; Schaafsma eR@l5). We argue that in part this is due
to graded differences in the cognitive processésted by various ToM tasks. More
specifically, we propose that the extent to whitdytrequire an intentional representation of
other individuals and the degree of integrationMeein such representations of others and
one’s own reference frame is highly variable.

Premack and Woodruff's conceptual differentiatioh ToM’s knowledge and
motivational processes has been followed by otmezstigators, distinguishing between so-
called cognitive and affective ToM (Baron-Cohen889Kalbe et al., 2010; Mitchell &
Phillips, 2015). In these accounts, “cognitive ToN® primarily focused on explicit
perspective-taking and strategic reasoning aboothan person’s beliefs, generating causal
inferences and predictions about the other’'s behnavihe term “affective ToM” in most
investigations is restricted to cognitive processesference about the emotions of others,
such as empathy, emotion recognition and emotiomulsition, and typically does not
emphasize goal states or valuations of possibierectBoth cognitive and affective ToM
processes have been investigated in great detamiing both lines of research at once
would go beyond the scope of a single article. &fwee, in this current review, we
exclusively focus on perspective taking and vabratl and motivational ToM processes
during decision problems. Such processes can beidayed affective just as they are
cognitive. However, in this paper, we do not explicconsider the processes more typically
denoted as affective, such as empathy for emotsiates. Instead, we examine how decision
tasks aimed at ToM likely differ with respect toetlcognitive functions they elicit. We
present a typology of experimental approaches amphitve computational models along
two primary dimensionsinteractivity and uncertainty. We propose that this typology can
help to interpret existing findings on the behaai@nd neural levels and can aid task design
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in future studies. Specifically, we suggest thaksawhich combine higher levels of both
uncertainty and interactivity facilitate investigats of and potentially providgreater insight
into high-level ToM.

1.1. Thefunctional relevance of interactivity and uncertainty in ToM tasks
In the presented typology of ToM tasks, uncertamgfers to either the risk or ambiguity
characterizing associations between actions, sttie transitions, and outcomes (Hsu et al.,
2005). Additionally, although formally not coverbg uncertainty, we discuss the availability
and accessibility of information in the context ofcertainty. We propose that under
uncertainty and unequal distribution of informatiogtween agents, others’ intentional states
likely become highly relevant and distinguishabl®ni one’s own intentional states.
However, task risks or ambiguities must not be aigas to be simply random chance or
there will be little incentive for any learning attterefore little incentive for tracking others’
intentional states. Uncertainty occurs both foriemmental (e.g., state, reward) and social
(i.e., agent) variables, and both are relevantht® roles that ToM plays in choice and
behavior. Environmental uncertainties may arise wjoént action-outcome associations or
state transitions are probabilistic, and their dyital changes are unknown. Social
uncertainty refers to the uncertainty about theo#gents’ actions, because their preferences,
goals, beliefs, abilities to track the environméntaiables, rationality or stochasticity, etc.,
are unknown.

Interactivity (Byom and Mutlu, 2013; Jording et,&019) in our proposed typology
of social cognition tasks refers to a combinatibthe social distance or face-to-face context
(e.q., still photos, recorded video, live videotenactive live video, interactive in person;
Spezio, Huang, Castelli, & Adolphs, 2007), the pe&d relevance, the task-dependent
consequences of a social cognition task (Bublagtlal., 2017), and the level of involvement
of multiple agents (Norris et al., 2014). Interaityi is a dimension of socially oriented tasks
that ranges from purely passive spectatorial olagienv to full consequential interaction.
Thereby, interactivity determines the behaviord¢vance of ToM. Behavioral relevance is
understood as the relative importance of makingliptens of others’ behavior from their
frames of reference, using those predictions ta plae’s own (re)actions, and so integrating
predictions from ToM into one’s own perspective.

We begin by summarizing a range of relevant ToMkgasrom psychology,
economics and decision neuroscience, and chaaetie different experimental approaches
based on the two proposed dimensions. We suggastdihergent knowledge about the
environment due to unshared information and asymenemnvironmental uncertainties
motivate the representations of others’ belief estaivhile social uncertainties elicit
representations of others’ motivational statesalllfinformation is equally accessible to all
agents involved in a task, participants observinmizracting with other agents have no need
for ToM beyond positing that another rational, cetgmt agent wants to succeed in the task
and has beliefs that correctly conform to the tasktingencies. As risk or ambiguity
increases and different information about the @mritent become available to the
participants and the agents they observe or irttevek, participants must distinguish their
own assessment of the environment from the othemtagassessments (i.e., beliefs about the
states, about the state transitions, or about ¢heand outcomes). As the other agents’
motivations, intentions and reasoning processe®rbecunclear an increased demand to
represent motivational states is created.

Second, tasks are characterized with respect ttygeeof interactivity they include.
We argue that the degree of interactivity and acémgagement influences the need to take
others’ perspectives and influences the level tdraction of such representations with self-
referential processes. The distinction between seifl other-referential processes in the
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realm of social decision making has proven veryfuls®r the functional relevance of
different brain networks relevant during socialrieag (Joiner et al., 2017; Qu et al., 2017).
We follow this differentiation and discuss self-dapther-referential cognitive processes and
their interaction depending on the varying levdlsnteractivity in experimental paradigms.
We propose that a task, where participants pagsolerve others’ actions in a context that
entails no requirement for any response or judgémenany consequences for the observer,
requires less ToM and less self-referential prangsthan a task where participants are
personally involved with another agent with gaimsl é0sses dependent upon the decisions
made by both. The function of ToM in the latter eéagould be to enhance the accurate
predictions of the other’s actions and so to impreuccessful coordination or competition.
Thus, social tasks in which multiple agents inter@mperatively or competitively in real
time with real consequences could foster higheelewf ToM than less interactive tasks
where little or nothing is at stake. In synchronousteractive, consequential tasks,
participants would be expected to represent anatlgent’s representation of themselves
(second-level ToM) or even go farther in tasks megg complex synchronous interaction to
achieve task-relevant goals (Doshi, Qu, Goodie, &uryg, 2012, Doshi, Qu, & Goodie,
2014).

In the second section of this review, we examirieidint computational models that
have been used to quantify the cognitive processigiduals engage in when solving such
tasks and characterize models with respect to theeraentioned dimensions. Lastly, we
interpret neural findings in neurotypical (NT) humsa
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Figure 1| Observational ToM tasks comprising environmental uncertainty.

(A) In the false belief task, a simple social scenaripresented to a participant. After observing eiascene that comprises a change in
the physical environment that the observed agenhasvare of (inducing a false belief), participamése to predict that observed agent’s
behavior. To successfully do so, participants havdifferentiate their own representation of th@immment from the observed agent’s
(physically inaccurate) perspecti{B) The trajectory of an agent starting from the bottaght corner of a simple maze-like environment is
presented to participants. The observed agentseparal abilities are limited by occluding wallsepenting them from overseeing the
entire scene. The participant takes a bird’s egezvBased on the path that the agent takes (héieabted by arrows) participants are asked
to indicate the agent’s subjective preferences aweilable goal states (here: purple, green andgeja(C) In a group decision game,
participants need to learn the value of two dynaityjcchanging probabilistically rewarded choiceiops. After making their own choice,
the selections made by other players who are legrabout the same choice options are revealed aidipants are allowed to adjust their
choice if desired. Finally, feedback about the melh@utcome associated with the chosen option isgmted(D) Participants observe four
different co-players with varying expertise in alpabilistic value learning task. First, they chobstween betting for or against these
agents’ success. Second, they see the observetlsageaice (their predictions about whether thespreed asset would increase or
decrease in value). Last, they receive feedbackitalvhether their bet was correct or not by eith@mning or losing money, allowing
inference about the others’ expertise and the vafessets(E) Participants observe the actions of different ageritose preferences they
learned in a pre-test training period. The outcameard associated with those actions is not redetdethe observer. To infer the
underlying reward distribution, participants needrépresent the observed agents’ learning processgsnterpret the observed agents’
actions in light of their preferences.
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2. Tasks

2.1. Observation under divergent knowledge and environmental uncertainty

2.1.1. Falsebelief reasoning and perspective taking

One of the most prominent tasks in ToM researcthasso-called false belief task (Figure
1A) first formulated by Wimmer and Perner (1983)isl a short story where the character
Maxi puts a chocolate bar on a shelf and leavesstie®@e. In Maxi’s absence, his mother
changes the state of affairs by moving the choedar to a different location. Upon Maxi’s
return, the observing participant is asked wher@iMeuld search for his chocolate. The key
feature in this task is the change in the stataffairs and Maxi's ignorance of that change,
i.e., Maxi’'s false belief. Unknown to Maxi, the d¢orgencies of the environment he acts in
changed. This means, that his limited knowledgeuatite environment leads him to a false
belief. In contrast, the observing participant lpasfect knowledge of the environment. To
correctly predict Maxi’s behavior, observing papents need to differentiate their own
correct belief about the situation from their resgnatation of Maxi’'s false belief and respond
based on their representation of Maxi’'s mentalestsfariants of the false belief task have
been deployed to assess the development of ToMtiebilin children, differences in
individuals with Autism Spectrum (AS), and nonhumgrecies’ abilities to reason about
others (e.g. Baillargeon, Scott, & He, 2010; Ba@ohen, Leslie, & Frith, 1985; Bora, Yucel,
& Pantelis, 2009; Call & Tomasello, 1999; Dufouradt, 2013; Saxe & Kanwisher, 2003;
Wimmer & Perner, 1983). Common to most of theseéatians is the use of social scenes that
require judgment about a false belief scenario., ¥Mepending on task specifics, findings
about when healthy children develop the abilitytheorize about other minds differ. When
explicitly asked, children typically answer quesgsoabout an agent’s false belief correctly
from around four years on (Wimmer and Perner, 1988yvever, 13-month-old infants show
correct anticipatory viewing behavior in such tagi&urian et al., 2007) potentially
suggesting an earlier onset of false belief undadshg (Baillargeon et al., 2010).

Following a similar general idea as false beliedisaning, Baker and colleagues
(Baker et al., 2017) introduced a perspective taldocenario which required putting oneself
in someone else’s shoes and seeing the world fhain éyes. They used maze-like spatial
layouts, an environment well suited for the appilaraof formal decision models, to examine
inferential processes about an observed agentisfbend desires: an observed agent with
unknown preferences is placed in an environmentaoaing different choice options with
varying subjective value to the agent (Figure 18)any given trial, only a subset of options
is available in the environment. Additionally, aeding walls prevent the agent from
overseeing the entire space. The agent has to rmmend to explore what options are
currently available and then choose the option thamnost valuable to him. Participants
observe the agent while taking a bird’s eye view.ilthe false belief task, participants are
fully informed about the environmental propertibsit the observed agent is uninformed
about the availability of goal states. That megwaticipants and observed agents have
asymmetric knowledge about the environment, and dheerved agent is faced with
uncertainty about the availability of goal statesdditionally, the observed agent's
preferences regarding choice options are unknowmatdicipants. Figure 1B shows an
exemplary situation. Two out of three possible chooptions (here indicated by purple,
green and orange) of varying subjective value todhserved agent are available. From the
initial position, the observed agent can only dse drange option. The agent first moves
around the occluding wall but then turns around r@tuains to the orange option. When asked
to rate the agent’s preferences based on this ehaarticipants indicate that green is most
valuable to the agent followed by orange and raiplp as least valuable. In search of the
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most preferred option, green, the agent moved arthmwall but returned to the second-best
option, orange, when seeing that only purple, dastl favorable option, was available. These
judgments indicate that participants infer the #gewnaluations based on the agent’s
perceptual experience, meaning based on the clomtiens he can and cannot see, and
attribute preferences to explain the agent’'s movesne

In false belief and observational perspective tgkiasks, information about the
environment is distributed unequally between pgodicts and observed agents. Fully
informed participants watch and predict agentsngciin environments accurately known to
the participants but not the agents. This task efteninduces a divergence between
participants’ own knowledge about the environmemdl she observed agents’ knowledge
about the environment. This mismatch is a key faftiotriggering reasoning about another
person’s knowledge state. If information about ém@ironment is equally accessible to all
participants and agents, there is little reasamake others’ perspectives as it provides little or
no additional information about the shared stat@weéter, by inducing differences between
one’s own and others’ belief states through uneglistribution of information among
individuals, one expects to elicit cognitive remmmtions conducive to experimental
investigations into the attribution of beliefs tthers (i.e. ToM). If task conditions favoring
the formation of cognitive representations of athdveliefs are weak or absent, then
detection or discrimination between participantsvno belief states and participants’
representations of others’ belief states becomgmssible. In addition to divergent belief
states, the perspective taking task by Baker €R@lL7) includes dynamic belief updates. As
the observed agent moves around the environmemg mimrmation about the possible goal
states becomes available and the observed ageglief s updated. To correctly predict
behavior, participants have to track these belpefates leading to an alignment of their own
belief and their representation of the observechiégdelief. That means, participants not
only have to represent the agent’s belief but sdsdynamically update these representations.
Additionally, participants encounter social uncirtia in this task. The observed agent’s
preferences are unknown and need to be inferred ddoserved behavior. This adds a second
inferential process. In addition to updating theeotagent’s beliefs about the environmental
context based on the observation of the agent's\beh participants must also infer the
preferences of the other agent. Thereby, a manifdéshtional representation of the observed
agent is generated, creating a scenario that alexasining the attribution of beliefs and
preferences at the same time.

However, while in both tasks the observed agenitentional states are highly
relevant, participants themselves take a purelgmiagional perspective. They are detached
and removed from the scenario and their judgmemd @redictions are entirely
inconsequential to the characters and the progmessif the scenes they observe. Thereby,
the prediction process taking place in the obsengehts’ reference frames is disconnected
from participants’ self-referential cognitive preses, with the possible exception of a
participant’s motivation to give accurate answerg aot to be seen to be in error.

2.1.2. Falsebelief reasoning and perspective taking in individuals with AS

Tasks that use observation under asymmetric disioib of information between observer
and observed agent inform most studies of childzed adults with AS. In these tasks,
children with AS often fail to show accurate explialse belief reasoning (Baron-Cohen et
al., 1985). This is sometimes interpreted as chrdwrith AS failing to have ToM. However,
as Premack & Woodruff (1978) noted, having ToM nsegositing others’ motivations,
intentions, goals and beliefs and does not nedbssamtail having accurate ToM. As
Gernsbacher & Yergeau (2019) show, there is nmgtempirical evidence in favor of claims
that children, adolescents, and adults with AS |ddM. Studies making such claims

7
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generally point to the impaired accuracy rathemticamplete absence of ToM. Several
findings indicating a specific impairment in ToM AS might actually be potentially related
to more general impairments, as IQ is a strongipt@dof performance on ToM tasks in AS
(Buitelaar et al., 1999). While most recent studissure that all participants with AS have an
IQ that is at or above “average intelligence” (il > 85; e.g., Vivanti & Rogers, 2011),
some studies that claim ToM differences continuddmonstrate differences in IQ that are
not controlled for in analyzing group differencessgaf et al., 2013). Senju et al., (2010)
argue that standard explicit false belief taskauiregsuch high verbal and other cognitive
abilities that they may yield false positives onMrempairment, at least in the case of
spontaneous ToM. To control for verbal intelligeniiterences, Senju and coworkers (Senju
et al.,, 2009) used a passive viewing false bebsk.t They demonstrated differences in
anticipatory eye movement between NT adults andgoer with AS, which they interpreted
as indicating impaired implicit ToM in adults withS who demonstrated accurate ToM via
explicit false belief tasks.

Perspective taking tasks similar to Baker et 2017) were used to test visual
perspective taking abilities. Level 1 visual peddpe taking (VPT1) is the ability to
accurately tell whether another agent is able &aeobject or a feature of an object or not.
Level 2 visual perspective taking (VPT2) denotes aility to understand that two agents
might see the same object differently. Thus, VP®2ues on how the same object is
perceived by different agents (Pearson et al., RB&arson and colleagues (2013) reviewed
several papers examining VPT1 and VPT2 in AS. Matsidies of VPT1 reported no
differences in AS compared to controls. VPT2 déferes in AS were inconclusive as studies
reported conflicting results. In a study of implia/PT1, Cafigueral & Hamilton (2019)
found that adults with AS showed no preferencenoking at recorded video clips of agents
who could see vs. not see. Controls preferred vidgs in which the agent could see,
suggesting that social gaze in controls but naduolts with AS may not be influenced by
implicit ToM.

2.1.3. Perspective taking in nonhuman primates

Since 1987, when Premack and Woodruff asked whethehimpanzee has a Theory of
Mind, experimental investigations have generatedpmiing evidence for and against ToM
in nonhuman primates. In a review summarizing nese&rom the 30 years following this
initial question, Call & Tomasello (2008) concluttat chimpanzees do understand others in
a perceptual-goal perspective taking task buttfaepresent them as full intentional agents
with beliefs and desires. However, experimentaldence is variable and inconclusive.
Experimental studies of nonhuman primates oftenalsservational and perspective-taking
tasks under asymmetric environmental uncertaintgrtisg with the work reported by
Premack and Woodruff (1978). Tomasello and cowark@rupenye et al., 2016) used
recorded video clips and measured anticipatory dobl bonobos, chimpanzees, and
orangutans to assess ToM for goal-directed behdiarbserved human agents. Most apes
showed gaze that anticipated that human agentsovamilby those agents’ false beliefs. In
his 2007 review, Premack broadened the false btsks to include direct gain and loss
relevance to participating primates, emphasizirg ithportance of social engagement via
direct consequential outcomes for the observeigyaant. For example, nonhuman primates
will wait until a human is not looking before attptimg to obtain food that is within reach
but not yet offered. In an interactive task testiegel 1, visual perspective taking, home-
reared chimpanzees showed strong evidence for stadeing which of two human
assistants had sight of a valued food object. &nhgil Tomasello and colleagues (Karg et al.,
2016; Schmelz et al., 2011) used turn-taking, sateractive tasks to conclude that while it
is unclear whether chimpanzees are capable of ddewval visual perspective taking, they do
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understand that conspecifics can use visual infoomado infer consequential state variables
such as the location of a valued food item. Fram$\hal and colleagues (Hall et al., 2017)
also used semi-interactive tasks with consequewntétomes in collecting evidence that

chimpanzees can engage in tactical deception amdecagnize that conspecifics do so as
well. Despite the richness of these findings, thierpretability has been questioned. Some
scholars reason that meaningful examination of TiaMhon-verbal species would require

clear definitions of what non-verbal representaiaf other look like, clearer operational

definitions regarding convincing evidence for Toklhd how this all could be realized

experimentally (Penn and Povinelli, 2007).

2.1.4. Observational learning tasks

Albeit not interactive, observational reinforcemdgdirning paradigms require participants’
active engagement because their own gains andslcasd potentially those of others, are at
stake. Experimental setups examining observatidéeaining deploy classic single-agent
reinforcement learning problems such as probaigilisversal learning or multi-armed bandit
tasks. In these tasks, the goal is to choose olirammong multiple competing choice
options. However, participants receive only probstioc information about choice-outcome
associations, so choosing optimally requires dyondedrning about the environment. During
observational learning, instead of choosing actiangl receiving outcomes themselves,
participants observe other individuals selectingveen available options for rewards (Hill,
Boorman, & Fried, 2016; Selbing & Olsson, 2017).orRr observed choice-outcome
associations, participants vicariously learn thedaulying reward distributions. In such
settings, the observed agent’s choices determménfbrmation the observer receives about
the environment. Apart from that, the observed #geactions and consequently his
representations of the learning problem are iragléuvo the observer. However, work on
preferences alignment has shown that participdmas observe others’ preferences in a
decision task are influenced by those traits, efe¢hese are not directly relevant for the
decision problem at hand. Using a social variantl@fly discounting, a task that requires
arbitration between smaller immediate and largéur&irewards, Moutoussis et al. (2016)
showed that participants’ preferences aligned vathers’ after observing their choice
behavior. Devaine and Daunizeau (2017) interpreth sattitude alignment as adaptive
behavior in difficult decision problems as it prdes additional information on how to react
to a highly uncertain decision situation.

Extending vicarious learning into a more immerse#ting, Zhang & Glascher (2019)
examined the effect of observing multiple otherheas while engaging in a probabilistic
reversal learning task oneself: participants cholseveen two choice alternatives, one
associated with a high probability of winning, tbder with a high probability of losing.
Reward contingencies switched after a variable rarmbtrials. After making their own first
choice, the other learners’ choices were reveahedparticipants received the opportunity to
adapt their decision, i.e., switch to the otherapor stay with their initial decision. Thereby,
the task allows for learning from one’s own andeosh experience (Figure 1C). Zhang &
Glascher found that the stronger the social infeionadiverged from participants’ own
choice (i.e., the more co-players chose the opposjftion to themselves), the more
frequently participants switched their choice tovgth the group.

A second engaging observational learning paradigs wtroduced by Boorman and
colleagues (Boorman et al., 2013): the task minacstock market scenario, in which
observed agents had to predict different asse@és in value. Participants observed the
agents’ learning success and were asked to bet fgainst their choices while the observed
agents completed the task with varying successir&igjD shows an exemplary situation with
four agents (green, purple, blue and orange) wifferédnt underlying fixed success rates
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(0.3, 0.4, 0.6 or 0.7) that are unknown to par#iais. In addition, participants themselves had
to occasionally predict the assets’ value develogmé&o perform well in this task,
participants needed to track the properties oflati® environment (i.e., the value of assets)
as well as the others’ expertise in the task, the, overall correctness of their choices.
Computational modeling results indicated that paréints tracked the observed agents’ task
abilities in a two-step process: first, during itl®ice period they evaluated the observed
choice in light of their own estimate of the assefalue (i.e., their own representation of the
environment). Second, at outcome presentation thpglated their estimate based on the
observed agents’ success rates.

The last variation of observational RL discussede hmotivated tracking agents’
learning by hiding action outcomes while the obsdragents’ preferences were known to the
participants (Collette et al.,, 2017) (Figure 1lEartRipants inversely inferred their own
subjective action values from the choices and peefees of the observed agent, assuming
that they would act to maximize their reward. THegrned about the environment by
interpreting observed behavior via a representatioine respective agent’s value space and
integrating own preferences with this informatiorperform actions.

Observational RL tasks instruct participants to imaze rewards in highly uncertain
environments where information is gathered by obsgrown and/or others’ actions and
outcomes. The need for intentional representatmfnsthers varies across those tasks: in
vicarious RL observed actions are merely usedacktenvironmental properties without the
need for an explicit intentional model of anothegert. In social influence tasks, other’s
actions are relevant for one’s own decision, b thher agent’'s frame of reference is
irrelevant, whereas in inverse RL tasks, the oflgant’'s action have to be inferred based on
his known preferences.

2.1.5. ToM processes in observational tasks

False belief (Wimmer and Perner, 1983) and persgetaking (Baker et al., 2017) tasks
require no choices from participants but requidgjuents that depend on the representation
of observed agents’ perspectives on the environnMast importantly, information about
the context is distributed unequally between thseoler and the observed agent, eliciting
divergent knowledge states. This divergence makeother's knowledge state relevant for
the observer’s predictions and judgements. Howeasrno choice or action that would
contribute to the dynamics of the scene is requitteid reasoning remains detached from the
observing participants’ own frames of references&delief and perspective taking tasks
therefore require representations of others’ inbeiad states but no integration of these
representations with self-referential cognitiveqasses.

In observational learning tasks, participants makeices after observing other
agents’ behavior in an uncertain environment. kanous RL (Hill et al., 2016), observed
actions determine the observations about the prldtadoreward structures. Similarly, in the
influence task (Zhang and Glascher, 2019), the gsoehoices can be interpreted by
participants as information regarding the qualifytleeir own choices. In the expertise
tracking task (Boorman et al., 2013), uncertairtpd the observed agent’s competence is
added. The observed actions have to be evaluatedlation to participants’ own world
knowledge and the estimated expertise. However etting results indicate that participants
did not assess expertise from the other agentsppetive but evaluated choices in their own
valuational frame. In these tasks, it is irreleviaoiv observed actions came about. Hence, it
is likely that participants integrated observed &aetr and action-outcomes into their own
representations of the environmental states amgitrans, but others’ perspectives and the
intentional states leading up to their actions werdevant to them. This is different in the
inverse learning task by Collette et al. (2017)isTéxperimental setting requires participants’

10



437 emersion into the other agents’ learning procespesentially eliciting an intentional
438 representation of others’ intentional states andluation of these representations with
439 respect to the participants’ own preferences.
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(A) Beauty contest (B) Public goods game

player 1 player 2 player 3
$30 $30 $30

level 2: level 0 $30 l $30 l $30l l
Y NI | public fund: $90 |

L« |

l investment x 1.2

Q level3: level 1: 100
“14” “33” i
I public fund: $108 |
adapted from Coricelli & Nagel, 2009
$27 l $27 l $27 l l
player 1 player 2 player 3
$27 $27 $27
adapted from Houser & McCabe, 2014
(C) Matching pennies (D) Prisoner’s dilemma (E) Stag hunt (F) Spatial stag hunt
player 1 player 1 player 1
heads tails cooperate  defect stag hare
o 0 1 5 0 -2 ® 0 3
5 3 2
. ¥ ¥
2 1 0 s 1 -3 o 5 3
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o
adapted from Mookherjee & Sopher, 1994 adapted from Houser & McCabe, 2014 adapted from Skyrms, 2001 adapted from Yoshida et al., 2008
(G) Trust game (H) Patent Race (I) Centipede game
initial endowment: player 1 price player 1 p1
proposer N . $20 $50 ass ass ass ass
Je —pass 5
Q o Q o
- 2 2 2 2
player 2 wins $50 = = s s
S 1 0 3 2
‘(? ) i s 5
§ player 1 adapted from Doshi et al., 2012

$10

adapted from Zhu et al., 2011

adapted from Houser & McCabe, 2014

Figure 2| Interactive tasksin stable and fully observable environments.

(A) The beauty contest game nicely illustrates the ephof recursive reasonin@he goal is to choose a
number between 0 and 100 that is closest t@PtBe average of the numbetsosen by all other participants.
It is assumed that depending on their level ofaopa, players choose different values: leved3, level 222,
and so forth(B) In the public goods game, a group of players ogred with an initial amount. They can
choose to invest as much as wanted into a pubtid.flrhe fund is then multiplied by a fixed facterdaequal
splits are returned to all players irrespectivéhedr initial investment amount. Additionally, pleng get to keep
the money they did not invest into the public fu(@) (D) (E) Matrix Games, suclas matching pennies,
prisoner’s dilemma and stag hunt are defined byyopt matrix. The payout matrix determines botlygta’
rewards based on the two players’ actions. Depgndim the configuration of the matrix a competitioe
cooperative coordination scenario is creaf€q.Grid games likehe spatial stag hunt add a spatial component
to games defined by simple payout structures abenprevious examples. To successfully coordinatthé
spatial stag hunt, players need to take the paih tlo-player is taking through this environmenbiaccount;
hence inference about the co-player’s future astisradded to the decision procg$) In the trust game one
player acts as the proposer, the second as thedrusctions are taken sequentially. The propoaerdecide
how much of an initial endowment to invest. Thedstiment is multiplied by a known factor. The reeeigan
now decide how much of the multiplied investmentréturn to the propose(H) The patent race game
comprises two players, a rich and a poor playethBtayers can choose how much of their capitddidofor a
price. The higher bid earns the price, both pldybids are lost.(I) In the centipede game two players
sequentially choose between “take” or “pass”. Wheplayer takes, unequal rewards are distributedott
players, and the taking player receives more. Itapdlly, with each move, rewards increase. Howetlres,
player whose turn it is gains a greater reward thahthe waiting player.
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2.2. Interaction under full environmental certainty
When social scenarios expand beyond mere obsemvétialirect interaction, interacting
individuals’ behaviors and consequently successiiitomes depend more strongly on their
thought processes becoming interdependent. Thisgneasituations in which an agent A’s
actions are relevant to a second agent B while Blsoactions are relevant to A, their
reasoning processes may become recursive (in tiee s# “A thinks that B thinks, that A
thinks that B will do XYZ.”) (Camerer, Ho, & Chongp04). This increase in interdependent,
or higher level, ToM is even more likely the mohatt successful task outcomes depend on
higher level ToM. To examine reasoning processedhisfkind, behavioral game theory uses
a range of simple yet very powerful interactivektagyenerally called “games”. A game in
this sense is a multi-agent decision situation wltbe actions of all participating agents
affect each other. That is, each individual’'s sescé@usually defined as maximizing the
individual reward) depends on others’ choices. Agag complete and optimal rationality of
all interacting agents (Gibbons, 1992), the fieldswnitially concerned with computing
optimal solutions to such games. These solutioesganerally termed equilibrium states.
Deviating from these equilibrium states would b&ideental for all agents. The most famous
example of such a state is the Nash equilibriumwéi@r, more recently, experimental
economics and behavioral game theory have focusednore descriptive rather than
exclusively normative questions, exploring whichctéas affect actual human social
decisions, which are often suboptimal from the jpective of rational choice theory
(Camerer, 2003).

Recent reviews summarize a multitude of studies dleploy a variety of strategic
games and examine the effects of instructions, ifrgjrincentives, and many other highly
relevant factors driving human interactive decismaking (Houser and McCabe, 2014).
Here, we can neither list all existing games, nonmarize the effect of the different factors
affecting strategic behavior listed above. We mepétk a subset of characteristic economic
games and discuss them with respect to our twanidgfidimensions: interactivity and
uncertainty. Furthermore, although classic econamsearch often tests strategic behavior in
one-shot scenarios, we only consider recurringactens. In everyday life, humans tend to
interact with the same individuals more than omdereover, repeated interactions allow for
sophisticated predictions about others’ behavisetaon regularities in their strategies or on
built-up expectations about their motivational assat

2.2.1. Anonymous group interactions

The beauty contest game (Figure 2A) illustratescitrecept of recursive reasoning in more
detail: a group of individuals anonymously choobetveen a number between 0 and 100.
The goal in the task is to choose the number ddse&/3 of the average of the numbers
chosen by all players. According to cognitive hiehy theory (Camerer, Ho, & Chong,
2003), people engage in reasoning processes ahgavels of sophistication to solve this
problem: A very basic player, so called level Ondamly chooses a number. A more
sophisticated level 1 player assumes all otheextat level 0, resulting in an average of 50,
and chooses 33 (2/3 of 50). A level 2 player comrsidhe others as level 1 players yielding
and optimal response of 22 (2/3 of 33), and sdorch recursive reasoning could in principle
extend ad infinitum, leading to the optimal equililon of 0. Nevertheless, on average, people
select numbers between 25 and 40 suggesting aniegdevel of 1 or 2 in this task setting,
but the variance in choices is large and groupsofing analytical training (e.g. those with a
PhD in economics compared to high school studeshisyv highly different means (Camerer,
2003; Camerer, Ho, & Chong, 2015).

The public goods game (Figure 2B) deploys anonyngrosip decisions to study
fairness and reciprocity in a situation where narnadividual interests may conflict with the
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gains or losses across an entire group (HouseMa@hbe, 2014; Khalvati et al., 2019). All
members of a group are endowed with the same li@tisount on each trial. They may
choose how much of their individual money to sdgnetvest in a public fund. The money in
this fund is then multiplied by a known factor amgual shares are distributed to all players
irrespective of whether they gave or chose noive tp the public fund. Players may choose
to keep all of their money on a trial, in which eabey have their initial endowment plus
their equal portion of the group distribution fraime public fund. This means players can
choose to cooperate by investing into the publiedflbut they can also “free-ride” by taking
their share of the others’ investment without irwegs themselves, maximizing only their
individual reward. However, free-riding is knownreduce the group’s overall investment in
the public fund, especially as more people in tfwg choose to free-ride as they see others
free-ride. This means that everyone, includingftee-riders, receives a lesser distribution.
Consequently, players need to consider their owiore effect on the group’s behavior to
maximize their outcomes. Overall, people investalnalf of the initial endowment although
the cooperation rate drops over repeated interactiothe group members remain the same
(Ledyard, 1994). Free-riding for a given trial aleoreases with increasing numbers of free-
riders on the previous trial. But not all partiangs show this pattern. Participants who
conditionally cooperate or go beyond reciprocatgenerally show greater attention to
others’ preferences and expectations, especiaby wwltiple trials involving the same group
members (Chaudhuri, 2011). Yamakawa and coworkGamékawa et al., 2016) partnered a
participant with a computer on the public goodsktd2articipants were informed that the
amounts they gave would have no effect on the coéenisyoredetermined investment into the
public fund, and so no effect on the participamtien gains. Under these conditions of full
lack of interactivity and full environmental cemngy, participants exhibited near 100% free-
riding behavior. Fischbacher & Gachter (2010) shibwbkat conditionally cooperating
participants in the public goods task were sersitivthe heterogeneity of agent preferences.
Computational models predict that greater enviramaleuncertainty in public goods tasks
could elicit greater sustained cooperation throatjéntion to the preferences of others in the
group (Kurokawa and Ihara, 2009).

Beauty contest and public good games immerse fpatits in an interactive scenario,
where actions of all involved individuals directbffect each other. However, as the
interaction takes place at the anonymous group,lefiectively assessing how participants
represent others as distinct individuals with indiisally different reasoning processes is not
possible. Instead, time-varying average group leaglables are the target of analyses. For
example, in the beauty contest, one estimates i@ level of sophistication. In public
goods games, one estimates the group’s preferaetasg to investment. This requires
observing and learning about these variables asaictions continue and so resolving social
uncertainty. Hence, instead of explicit recursiegasoning about other individuals’ specific
cognitive processes, participant models focus errd¢leursive reasoning about the group as a
whole.

2.2.2. Dyadic games

Dyadic games (i.e., those involving two playerdpwl for more direct interaction and
individually focused ToM than do anonymous grougkga First, we consider strategic two-
player games entirely defined by a single payoffrimaconditioned on both players’ actions
a payoff matrix alone determines individuals’ redsar Well-known examples comprise
“matching pennies” (Mookherjee and Sopher, 1994)hby, 1974) (as variant also known as
“hide and seek”, “inspection game”, or “rock, papscissors”), “prisoner’s dilemma”
(Axelrod and Hamilton, 1981) (Figure 2C to E), distag hunt” (Rousseau and Cranson,
1984; Skyrms, 2001). Matching pennies is a zero-game fully defined by a competitive
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payoff structure. One player’s win determines thpanent's loss and vice versa (Figure 2C).
Stag hunt constitutes a cooperative game whichinegjeoordination between partners to
obtain the highest possible rewards: jointly gdiogthe large reward (i.e., both hunting the
stag instead of going for smaller individual rewatte hare) yields the maximal payoff for

both players (Figure 2E). The famous prisoner'srdiha incorporates both, competition and
coordination. Both players have the option to “carape” or “defect”. When joint actions are

uncoordinated (i.e., one player choose cooperaigshe other defects), the defecting player
gets the best outcome, while the cooperating pleeives the worst outcome (Figure 2D).
Coordination (both players choose identical achcegerts one’s big loss and leads to a
symmetric, but suboptimal outcome for both players.

Spatial variants of these simple matrix games, et$erred to as grid games, have
been created by adding two-dimensional grid wottdshe elementary payoff structure of
fully cooperative and social dilemma type of garieeiman-Weiner et al., 2016; Shum et
al., 2019; Yoshida et al., 2008). In these grid ldgrthe underlying payoff structure of a
game is preserved, e.g. in a spatial stag huntlyogatching the stag yields the highest
reward (Figure 2E), but additionally coordinatechdeterm action planning is required
(Figure 2F). The rate of cooperation in grid gangdepends on the underlying payoff
structure, such that there are higher cooperatitasrin pure coordination games and lower
cooperation rates in dilemma type of scenariosithd@-Weiner et al., 2016). Yoshida and
colleagues showed that cooperation rates also deperthe strategy of each partner: They
found higher cooperation rates with partners ofhérg sophistication level (Yoshida,
Seymour, Friston, & Dolan, 2010; Yoshida et al.Q&0

2.2.3. Bargaining games

The last group of interactive games considered, hieciuding the “trust”, “patent race” and
“centipede” games, consists of simple bargainingrenments (Sanfey, 2007) (Figure 2G to
). In the trust game (Berg et al., 1995), onevad players, the investor, is endowed with a
certain amount of money (Figure 2G). The investmdes how much of that amount is to be
invested with the other player, the trustee. Uporestment, the money is multiplied by a
fixed factor and the trustee can then decide howmud the resulting amount to return to the
investor. When the investor invests a lot and thstée returns a fair share of the multiplied
investment, from the perspective of both playeathlplayers mutually benefit. However, if
the trustee does not return at least the investexlat, the investor loses money and a cycle
of distrust begins. This tends towards the investaking investments of less money, which
lowers payoffs for both players. In a multi-roumdst game, players commonly follow a tit-
for-tat strategy. They cooperate when the co-playsperated in the previous round and
likewise do not cooperate (lower the amount of ntaryetransfer) following non-cooperative
behavior. But both, investments and returns, diggreduce over time (King-Casas et al.,
2008, 2005). However, some trustees show “coaxagiavior when investors’ investments
decrease substantially and they return a largaesbfathe multiplied investment to reassure
the investor of their trustworthiness (King-Casasle 2008). These findings indicate that
behavior in the trust game relies on reasoningge®es on how actions affect a co-player’s
impression of one’s own trustworthiness and codpemaess. In the patent race game
(Dasgupta and Stiglitz, 1980; Loury, 1979), twoyelas, competing for a prize, receive initial
endowments (Figure 2H). However, one player recein®ore and is “richer” than the
opponent. Both players simultaneously bid for thieegp The player that offers the larger
amount wins the prize but loses his investment|enthie second player loses his investment
and also the prize. To maximize their returns, @layieed to invest as little as possible but as
much as necessary to outbid the opponent. Baseth&n opponent’s choice history,
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participants can make predictions of their opposenext offering. Further, players can
assume that their partner is predicting themselviggiering recursive reasoning processes.

In the centipede game (Rosenthal, 1981) (Figure b players take turns at
choosing between keeping a pot of money or passmgto the co-player. If the first player
passes the money on and the co-player keeps inetiteround, the first player’'s outcome is
slightly lower than if he would have kept it. Hovesy after a round of passing by both
players, both players’ outcomes increase. As intthst task, the centipede game requires
reasoning about how one’s own behavior will afftbet co-player’s future actions, especially
whether that person will reward or punish mistmgtchoices, respectively. Additionally,
participants could engage in representing and reéagabout their partners’ representation
and reasoning about them, and so on. For instanftely rational and optimal player solves
the centipede game by backward induction: “in otdereceive the maximum reward at the
end, the other person has to see the advantagassing, which implies that | have to pass
also,” etc. Such reasoning quickly reveals thatoghigmal solution is to take the money in the
first step, thus insuring at least a minimal rewatdwever, humans often advance the game
to a later stage (Hedden and Zhang, 2002; McKearey Palfrey, 1992) potentially due to
their limited capacity for complete backward reasgnall the way through (Ho and Su,
2013) or because they recognize the mutual long teenefit of reciprocating and/or
altruistic behavior.

2.2.4. ToM processes in interactive games

This brief overview of the characteristic featurafs game-theoretic tasks indicates how
interdependent decision processes are favored terdependent designs. The ability to
strategically respond cooperatively or competigivéh these tasks requires forming a
representation of another agent’s motivationalestaind reasoning processes and types, e.g.
whether the other person follows win-stay-losetshiffor-tat, choses actions at random, etc.
(Axelrod and Hamilton, 1981). Individual state atmdit variables such as risk aversion,
ambiguity aversion, fairness, trust, and greed came play in dilemmas and bargaining
tasks (Engel and Zhurakhovska, 2016).

We can perceive the dimensions of uncertainty ateractivity in these tasks, and
map those onto how likely they elicit ToM at all well as how likely they elicit deeper
levels of recursion in ToM. In all interdependeasks, irrespective of the specific payoff
structure, whether they are cooperative or competiplayers’ choices and outcomes are
bound together in real time, thus favoring actieeursive reasoning on a trial-by-trial bases.
Further, if one’s own and the others’ interestsedpe, evaluating joint decisions requires
greater cognitive effort (Emonds et al., 2012). tAktks discussed in the previous section are
strong in attempting to maximize social uncertaimtiythe fully cooperative stag-hunt game,
for example, both players’ overall goals can beuars] to be aligned given the cooperative
setup. Therefore, motivational variables tend tolé®s important in this scenario, but
uncertainty emerges from individuals’ risk aversi@uyukboyaci, 2014). However, these
tasks do not present participants with uncertamirenmental contexts or include uneven
distribution of information between agents. Congadly, while success in these tasks
depends on representing others’ motivational st@telsindividual character traits, etc., none
of these tasks requires updating representationthefs’ beliefs about the states or situations
constituting the environment. To drive participattengage in ToM more consistently over
the course of a task, and to represent of otheasivational and knowledge states, we need
tasks that expand on both social and environmemizrtainties.
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2.2.5. Srategic interaction in persons with Autism Spectrum

The vast majority of investigations into ToM abdd in autism spectrum (AS) has been
conducted using false belief and perspective takisgs. However, more recently strategic
games and computational cognitive modeling haven b@eployed to examine strategic
reasoning abilities and differences in individuaith AS. In a “reverse Turing-test” (D’Arc,
Devaine, & Daunizeau, 2018) persons with AS andatgpical (NT) controls played “hide
and seek” (similar to matching pennies, Figure 2&Yhis competitive game one individual
wins, if the opponent’s choice mismatches. For epdlamf a participant hides behind a tree
and the opponent searches behind the wall, thecipart wins. Using social and non-social
framing, D’Arc and colleagues (D’Arc et al., 20183)owed that strategies of persons with AS
did not differ between a supposedly human or cosmpapponent, while NTs successfully
competed in the social but not in the non-sociahddion. Further, persons with AS
successfully competed against fictitious opponemizdeled using random and simple
fictitious play (a strategy based on the opponentéceding choice frequency) but failed in
competition against opponents following higher leeeursive models. These results support
findings from the first quantitative examination mdcursive social reasoning in AS by
Yoshida et al. (2010). Using the spatial stag lgarmhe (Figure 2F) with adults with autism,
they found that some individuals with AS exhibixireme choice behavior, such that they
never cooperated or never competed. This patterasesnt in NTs. The authors showed that
the severity of AS symptoms correlated with AS iggrants’ abilities to successfully
compete against recursive decision strategies. eTHest studies quantifying strategic
behavior in persons with AS using computational el®grovide fine-grained insight into the
ToM differences during strategic interaction in AS.

2.2.6. Srategic interactions in nonhuman primates

A focus on ToM tasks developed especially for apgliad to understanding ToM in
nonhuman primates is necessary for a full undedgtgnof how ToM relates to evolution in
simiiformes, especially to the roles of cooperatimmd competition in the evolution of
hominids and hominins. Coordinated cooperation eochpetition appear to have played
critical roles in the evolution of simiiform braired intelligences. Within the social brain
account (Dunbar, 2009), which is the hypothesid flréanates’ large brain volume and
complex social cognition developed in responseh® demands in increasingly complex
social groups, cooperation and affiliative groumdiog are more prominent as the driving
forces in cognitive and brain evolution. This vieas support from accounts that argue for a
more important role of pro-social behaviors in litaing in group bonding (Barrett and
Henzi, 2005). On the other hand, thtachiavellian hypothesis (Whiten and Byrne, 1988)
focusses on the evolution of sophisticated ToM ipleasizing competitive interactions and
the need to outperform others in the competitiorrégsources.

Little is understood about the cognitive and newsatems underlying coordinated
cooperation and competition. In the absence of cdatipnal evidence, there are ongoing
debates about whether evolutionary costly expassminthe primate brain owe more to
increased need for cognitive resources, includioyl,Tto cooperate (Dunbar, 2009) or to
manipulate and dominate (Byrne, 2018). Recent cdatipnal approaches, drawing on
several of the task designs reviewed here, lendhhso these questions about the role of
ToM in evolutionary history. Devaine and colleagu@917) examined seven different
nonhuman primate species’ responses in hide arldgseres. It was found that all species
showed less sophisticated behavior than humanshand oM abilities varied with species’
overall brain volume but not social group size. Bu¢hors suggest these findings support a
general intelligence rather than a social brain oftypsis, such that the evolution of
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sophisticated ToM was determined by overall indreagognitive abilities rather than in

response to the increasing complexity of social momities. Comparing the behavior of
chimpanzees and humans in a competitive inspegaame, Martin and colleagues (Martin et
al., 2014) found chimpanzees’ choices to be muasetlto equilibrium (i.e. optimal behavior
according to norms of rational choice theory), thdéne choices made by humans.
Chimpanzees followed rational choice theory whilenlans depart from it in favor of more

cooperative choices. This could be due either tgremter propensity for cooperation in
humans when interacting in small groups with re&d§i low stakes, to the fact that humans
depend on language to make optimal choices, orotnescombination of both of these
possibilities.
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717  Figure3|Interactive decision tasks under uncertainty
718 (A) In the advisor task one participant takes the obliée advisor, the second of the advisee. Thesagvinas to
719 make choices on a probabilistic lottery with highcertainty. Correct choices move the advisee faivear a
720  progress bar, incorrect choices send the advise&waads. Additionally, if the advisee finishes iwat
721 predefined regions, the advisee receives a bonad ®for +20 but not the advisor. The advisor rezgimore
722  accurate information about the outcome of the fgted can choose to send advice to the adviseeett,
723 the advisor's bonus regions are defined differetitign the advisee’'s bonus regions, creating a iconfia
724  competing interest§B) The tiger task simulates a simple game show samravo players are faced with two
725 doors. Behind one is a pot of gold (a positive meaf +10) behind the other door is a tiger (a éanggative
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726  punishment of -100). The players have to choosevdmst three choice options: (1) listen (providing
727  probabilistic information about the tiger’s locatiat a small cost of -1); (2) open the left doar(3) open the
728 right door. Depending on the reward configuraticmmpetitive (left) or cooperative (right), co-plagenave to
729 race to identify and open the door of the goldhaythave to coordinate responses in identifying @mehing
730  the door to the gold, respectively.

731
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2.3. Interaction under social and asymmetric environmental uncertainty
Very few experimental approaches to date have ammubiasymmetric distribution of
information, environmental uncertainty and interatt. One example is the advisor task
(Behrens et al., 2008; Diaconescu et al., 2014gufei 3A) in which two participants, an
advisor and an advisee, interact in a gambling. tAkk advisee has to choose between two
uncertain lotteries, while the advisor, who is pded with more accurate information on
outcome probabilities, can send simple cues tcathesee on which action to take. After a
correct choice the advisee moves forward on a pesgbar and receives a small reward, but
an incorrect choice sends the advisee backwardsresudts in a small financial penalty.
When the advisee moves into pre-specified regionthe progress bar associated with either
a bonus for the advisee or the advisor, there igdalitional payout of $10 or $20 for one or
the other, but not both. These regions are fulsgldsed to the advisor, but the advisee only
knows their own bonus regions, while being ignorahbut those of the advisor. These
different regions are designed to manipulate théivational states of the advisor. During
one phase of the game, the advisor acts to enbatetlte advisee moves into one of the
advisee’s bonus regions, providing veridical advat®ut the outcome probabilities. Other
phases of the game incentivize the advisor to hititee advisee from reaching the advisee’s
own bonus region by providing false advice. A maptnt who uses no ToM in the task
would ignore the advice and would simply need todetahe likelihood that the lottery
corresponds to the true outcome (i.e. environmeamteértainty). A participant that takes into
account the asymmetric distribution of informatiabout the lottery between advisee and
advisor, and advisor's and advisee’'s competingrasts is likely to use ToM. Modeling
results by Diaconescu and collegues (2014) inditete participants use ToM in the advisor
task. They found that choices made by participtrastook the role of the advisee were best
explained by a model that included a parametemasitng the advisor’s current tendency to
be accurate and a parameter estimating the adviklelihood of deception across the trials
(i.e., social uncertainty). Participants did bettdren they estimated advisors to be reliable
and accurate, and in fact advisors gave accurtdemation about 75% of the time.

A powerful experimental setting combining full irgetivity and uncertainty is the
multi-agent tiger task (Doshi and GmytrasiewiczQ20Kumar et al., 2019) (Figure 3B). In a
scenario that mimics a game show setting two ptalgave to learn which of two doors hides
a pot of gold (reward of +10) and which hides ag#aiaus tiger (punishment of -100). They
can choose to open one of the doors or sample Ipik@bia information about the location of
the tiger and about the other player's action ameall cost (-1). If a door is opened, the
tiger’s location is randomly reset, and the garaetstanew. A superimposed reward structure
incentivizes players to cooperate or compete. & dboperative setting, after each action
players receive half of the partner’'s outcome wimléhe competitive scenario half of their
partner’'s outcome is subtracted from their own ouie. In other words, under competitive
conditions, an opponent’s loss results in a windoeself, under cooperative conditions the
partner’s loss results is also one own’s loss. Aaidlly, periods of divergent knowledge
states between co-players occur when one choossamgple more information while the
second opens the door. An opening action providekoat window of more information.
First, the co-player’s choice is revealed. Secafidr opening the door, the player finds out
where the gold is and knows that the location efdbld and the tiger will be reset, so that
previously sampled information needs to be disahrdiais asymmetric knowledge about the
state of the gold and tiger is an advantage inctimapetitive setting but detrimental for the
cooperative condition. In the competitive settingyprs race to open the correct door before
the opponent does, while they still need to sarepteugh information to avoid the tiger. The
cooperative scenario incentivizes coordinated biehawer individual learning about the
reward distribution. This typically results in femiials spend sampling the information in
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the competitive setting, which leads to riskier icke, but also has the potential to beat the
opponent to the gold (Kumar et al., 2019).

2.3.1. ToM processes during interaction under social and environmental uncertainty

Both the advisor and multi-agent tiger tasks inel@adymmetric distribution of information
and high environmental and social uncertainty. pdkticipants receive only probabilistic
information about the state of the environment.sTimeans not only they themselves form
uncertain beliefs but also can only estimate theertd belief about the state of affairs.
Additionally, in the advisor task, the advisor nees more veridical information than the
advisee, creating divergent belief states betweersar and advisee. In the tiger task beliefs
diverge when players perform different actions an@ player receives more information
than the other. As in the false belief task, dieetgoeliefs in advisor and tiger task create an
incentive to represent the other’'s knowledge stidtevever, the false belief task is purely
observational. In contrast, in the advisor taskisgbs react, and in the tiger task players fully
interact. Further, advisor’s cues in the advisek tadd additional uncertainty and the advisee
needs to infer the advisor’s intent and trustwortss. Advisees need to integrate both their
prediction about the advisor’'s trustworthiness &mthfulness in giving advice on a given
trial, which in turn results from their represerdatof the advisor’s intentions, together with
their own beliefs about the lottery. In contradistion, incentives are clearly set in the tiger
game. However, individuals may differ with respectiskiness. Players need to estimate and
react to their co-players’ individual levels ofkdseeking behavior and integrate that into the
rest of the task components. These task propdikiely trigger complex social reasoning
processes including a representation of the otBesop’s dynamically changing beliefs and
their motivations. Players have to integrate thestimate of the co-player's learning,
valuation and decision process with their own. Aiddally, they need to consider how they
themselves are represented by the other. Henc&s owa reference frame and that of the
other are recursively interweaved. By combining iemmental uncertainty and unequal
distribution of information about the environmehese tasks promote and therefore allow
careful computational analysis of the attributidndgnamic belief states. Uncertainty about
others’ intent and risk aversion requires additioimerence about motivational states.
Finally, incorporating interactive settings creatggportunities to examine the dynamic
attribution of trial-by-trial changes in others't@émtional states, the prediction of behavior in
light of these states, active choice with respedairte’s own knowledge and motivations, and
reflections about one’s own reference frame frohe’ perspectives.
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Figure 4| Localizing tasks and models with respect to our 2-dimensional classification space

We characterize tasks and models with respectaadimensions: interactivity and uncertainty.

(A) Uncertainty with respect to tasks is further splito social and environmental uncertainty. Social
uncertainty refers to ambiguity about others' imévariables such as their individual preferenmetevel of
cognitive sophistication, and their beliefs, valsesl motivations. Environmental uncertainty indésathat
participants and observed agents are faced withisy mnd only partially predictable surrounding teom and
need to infer its current state on each trial. Ndtat the false belief task includes neither dociar
environmental uncertainty. However, this and otlasks include divergent belief states. This compbienot
captured in this figure. Interactivity is gradad follows: (1) mere observation of others actiaithout
predicting or reacting to them but using the infation their actions reveal about the environme?jtréacting
to others’ choices by integrating them into oneMnadecision process but without taking others’ pecsives,
(3) predicting others’ behavior from their framdsreference, and finally (4) predicting others lking their
perspectives while at the same time integrating itiio one’s own frame of reference to react to iafldence
others’ behavior.

(B) Uncertainty with respect to models denotes whethey include parameters that model agents’ legrnin
about environmental and social uncertainty or idelno learning. Interactivity indicates how well dets
parameterize representations of other agents. fidnges from (1) single agent models with no explici
representation of the other but integrating infaioraderived from others’ actions, (2) sub-intentb or (3)
intentional representations of others to predittris choices and optimization of own actions wiglspect to
these predictions, to (4) sub-intentional and &@ntional recursive models where predictions béat include
predicted responses to one’s own actions and ggtion of one’s own behavior to these nested ptiedis.
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3. Models

To specify the hidden cognitive processes undeglyivert behavior cognitive neuroscience
leverages quantitative computational models that far to the participants’ behavioral
responses. From these models, latent variablesirgagtthe significant computations are
extracted and combined with neural data in modseéfaanalyses approaches. Model-based
analyses in cognitive neuroscience examine howcpéat cognitive operations are carried
out at the neural level (Glascher & O’Doherty, 2DMe review a number of computational
models that have been used to elucidate sociasidaemaking processes. As was the case
when characterizing experimental approaches, wieugd the dimensions of interactivity and
uncertainty to characterize models. Interactivitythe context of formal models denotes the
extent to which agential models capture the otgentis reasoning. Interactivity in models is
subdivided into two additional sub-dimensions: i(itentionality, or models that include an
intentional model of others in contrast to moddiattinclude only the effects of others’
actions as regularities in the environment, and r@jursivity, or models that capture
processes such as “Agent A thinks that agent Bcghthat A thinks that XYZ is the case”.
Uncertainty in models refers to models’ capacit@sepresent the underlying but sometimes
only partially accessible states and dynamics @fttivironment.

3.1. Non-interactive models for decision making under uncertainty
The formal social decision frameworks included haebased on single-agent reinforcement
learning (RL) models. To simplify the understandiof subsequently presented social
decision frameworks, we briefly summarize singlerggnodels. RL problems are typically
modeled by the Markov Decision Process (MDPs) (fwae, 1990). An MDP is defined by
set of statesS = {s1,...,s¥,..,s™"} representing the environment, a set of actidns
{al,...,d%,..,a™} an agent can take, a reward function determinivegreward based on
states and actionR(s;_1,a:_1,5¢), and a transition functionT = p(s¢|sSi_1,at_1)
determining the environmental dynamics. The tramsitunction captures the probabilities of
transitioning between states given specified astiddifferent decision strategies in the
different states of the environment provide varyiegards to the agent. The goal in RL is to
take those actions that maximize the long-term etgoefuture rewards (Sutton and Barto,
2012). This can be achieved via choice-heuristind l@arning the value of chosen (and
sometimes unchosen) actions without explicitly espnting the structure of the environment.
This occurs by mapping actions directly to rewandsso-called “model-free learning”.
Alternatively, agents might develop “model-basedarténg” via a sophisticated
representation of the environment, which meansesgmting the transition probabilities
between states, thereby allowing for flexible gdakcted decision making. Evidence for
both model-free and model-based learning has beemdfin humans and other organisms
(Daw & Dayan, 2014; Daw, Niv, & Dayan, 2005; GlaschDaw, Dayan, & O’Doherty,
2010; Wan Lee, Shimojo, & O’'Doherty, 2014).

3.1.1. Model-free single agent decision models

Model-free learning and decision making can be wapt by temporal difference (TD)
learning (Sutton and Barto, 2012). In TD, an agearns solely by experience without
knowing and representing the dynamics of the enwirent. At each time stepthe value
V(s;) of taking a strategy in statg € S of the environment is updated based on the addain
reward:

V(se) = V(se) + alreer + ¥V (Se1) — V(s)]
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with @ being a learning rate that weights the influenten@v observationsy being the
discount factor regulating the effect of future ued. Although lacking an explicit
representation of the surrounding dynamics, dynawatue updating provides a basic
representation of environmental uncertainty.

Basic model-free, single-agent RL algorithms carptwa vicarious learning
mechanisms elicited in observational learning sgesan which individuals do not act
themselves, but learn their own action values Iseobng the actions of others as well as the
outcome of those actions (Burke, Tobler, Baddefe$chultz, 2010; Hill et al., 2016). More
complex observational learning problems requireemsions of classic single-agent RL
models. To formalize indirect learning about th@iemment that occurs only by observing
others whose preferences are known to the obsbutewhose action-outcomes are hidden
(Figure 1E), Collette and colleagues (2017) usednaerse RL framework. Inverse RL
distinguishes from classic RL in that instead ginty to find an optimal strategy with respect
to a given reward function, it aims at inferringetheward function that best explains an
agent’s behavior (Arora and Doshi, 2018; Ng andsRllis2000). Collette et al. (2017) used
inverse RL to capture how humans make sense ofvtitedl by observing other agents’
behavior. Their computational model recovered thdeulying reward distribution that best
explained the observed agents’ actions, therebyudag participants’ learning about the
environment only by observing behavior.

3.1.2. Adapted model-free single-agent models

A different adaptation of single-agent RL was foundoest capture the tracking of others’
expertise (Boorman et al., 2013) (Figure 1D). Boamnmand colleagues combined classic
learning about the values of strategies with leayr@bout the quality of others’ behavior (i.e.,
the correctness of others’ actions). Observed agerpertise was operationally defined as
the probability of them making correct choices avas modeled in two sequential learning
steps. First, the match between the observed @&gehtice and one’s own action-value
estimate was assessed. Second, the expertise testvaa updated based on whether the
observed action was or was not correct. The authotsd that the first updating step is
suboptimal with respect to rational choice theont twas required to adequately model
participants’ choices. This suggests that instdagmresenting other agents as performing at
a constant rate throughout, participants repredahie agents that they observed as learning
about the value of assets in a way that was sirtolaheir own learning. Interestingly, this
suboptimal model best explained participants’ cb®iboth when they received instructions
that the “other” was a person or a computer.

A third variation of single agent RL was presenited recent attempt to model social
influence of group decisions on individual decislonZhang & Glascher (2019). In a two-
phase group decision task, participants could aitieot own choice after the decisions of the
other group members had been revealed (Figure Zkang & Glascher developed a
computational model that combines learning from’®mevn experiences (via a classic RL
approach) with learning from other players. Thay tthis by computing a value based on the
recent reward history of the others. These two evaignals were weighted into a single
choice value determining the first decision. Thedeldhen predicted switch or stay after the
disclosure of group behavior by incorporating pasters for the difficulty of the first
decision and for the coherence of the group’s datis

All three variations of model-free, single-agent Riresented above capture
individuals’ learning about an uncertain environtnesmen that learning is based on one’s
own action-outcome associations and/or observimgret behaviors in the world. In the
inverse RL model by Collette et al. (2017) thischieved by learning “through the eyes” of
an observed agent. Although this inverse RL modatsdnot include an interactive
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component and no explicit representation of othiérdpes include an intentional model of
the other's decision-making processes. The obseragdnt's learning is explicitly
represented to infer the hidden aspects of thedwdml contrast, neither the social influence
model nor the expertise tracking model explicitpmesents others’ learning or makes
predictions about the choices of the agent beirgeiied. These models represent others’
task capacities irrespective of the decision preegshat lead up to their choices. So, while
these models capture learning about an uncertairowsuing from the agent's own
perspective, they do not represent others’ decisiaking processes.

3.1.3. Model-based single agent models

Model-based action planning relies on an expligpresentation of the environmental
dynamics captured by the transition functiBn Representing these dynamics allows for
flexible decision-making. However, planning an oml path through a given environment
requires a representation of the current states iBhtomplicated when agents cannot directly
observe the current state but only receive incotapieformation about it. Under these
conditions, percepts are partial and/or informai®ambiguous. Formally, decision making
under state uncertainty is captured by Partiallysédable Markov Decision Processes
(POMDPs) (Kaelbling et al., 1998). In a POMDP, mf@tion about the state at any given
time is defined as a set of observatighs: {0, ..., 0%, ...,0"} an agent can make. Actions
taken at a given time step, and the states,,, resulting from those actions define
observation probabilitie® (o;|s;, a;—,). To deal with state uncertainty an agent integrate
observations to form a beliéf about the possible states of the environment. &jb&eliefs
then dynamically update given the agents’ obsesaatiand prior beliefs, using a Bayesian
estimation function:

b:(s¢) = BO(0¢lse, ar—1) Z T(SelSt—1, Ar—1)be—1(Se—1),
St-1
where

1

a Pr(o¢|b;—1,a¢-1)

is a normalizing constant.

To capture the core features of ToM, which areasgntations of others’ belief and
motivational states, Baker et al. (2017) used aersled POMDP model (“Bayesian ToM
model”). This model computes a joint posterior @iolity representing an observer’s beliefs
about an observed agent’s possible beliefs. TheabJielihood is factorized into a model
for the observed agent’s beliefs and a model ofatfent’s planning process based on beliefs
and desires. The Bayesian ToM model formalizesctied non-interactive representations of
an individual’s intentional representation. Theselude another person’s beliefs about an
uncertain environment based on the observed agemparfect perceptual capabilities, along
with the agent’s subjective preferences inferrennfobserved behavior. Thereby the model
captures intentional decision making from anothelividual’s perspective. However, it does
not formalize how this process is integrated witie's own beliefs and desires and the
choices that one makes as a result of these bahefslesires.

Both, model-free and model-based single-agent Rlaméworks capture
environmental uncertainty. Additionally, extensiafsthese models use inverse RL and the
Bayesian ToM model to formally represent othergeimional learning processes from a
detached observational perspective. Active engageraad interaction are not formal
features of these models.

= Z 0(o¢|se, ar-1) Z T(SelSe—1, Ar—1)be—1(Se—1)
St St—1
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3.2. Interactive decision models without environmental uncertainty

3.2.1. Recursive models

When multiple agents engage in interactions wheedr foint actions are relevant to one
another, such that their individual rewards depemathers’ behavior, reasoning can become
recursive in the form of “I think, that you thinthat I think, ... .” and so on. Formally, this
sort of thinking is captured by what is called &vél-k framework” (Stahl, 1993) and
cognitive hierarchy theory (Camerer et al., 2004 depth of reasoning an agent engages in
is referred to as itsevel with the parametek determining the sophistication or depth of
reasoning. The concept is well illustrated by theauiy contest game described before
(Figure 2A). Level-k frameworks are defined in atbm-up fashion starting with a base
level 0 agent model. A level-0 agent does not neasioout others. It might completely
discard any information about the other’s behawand treat it as environmental noise, or
assume the co-player is acting according to a Inidtistribution (Coricelli & Nagel, 2009;
Devaine et al., 2014; Gmytrasiewicz & Doshi, 208%shida et al., 2008). A level-k agent
represents the other agent at level k-1. That isya-1 agent Al represents the other agent
A2 at level-0 (i.e. as having no ToM). A level-2eag) A1 represents the other agent A2 as a
level-1 agent. This means that from the perspeaivAl, A2 represents Al as a level 0
agent. This illustrates that by definition, k-lewebdels represent other agents as ill-informed
about the ToM level of the primary agent. The remur in k-level frameworks theoretically
extends ad infinitum, but typically most human dasi do not require modelling agents
beyond level 3 (Camerer et al., 2015). The speciliiclevel-0 models and consequently all
higher-level definitions are determined by the dieci problem and the underlying basic
decision model.

The advance of level-k frameworks over other modeigiewed before is the
capability to formally model agents’ representasionf others as interactive agents
themselves, i.e., as agents that respond to othehglvior and that have representations of
one’s own ToM. This allows capturing real interaityi and interwoven information
processes as “model within a model”. Second, spegfdifferent “base models” as level-0
models allows the capture of a variety of sociasoning processes; from representing
others’ as following simple sub-intentional stragsgto representing others as fully
intentional, goal directed agents. Here, we proddeoverview over the most prominent of
these models and we highlight their properties wa$pect to our two defining dimensions
and elucidate their implications for ToM research.

3.2.2. Level 1 andlevel 2 models

Although not actually considered a level-k modaediitious play is a basic framework for
interactive decision making (Brown, 1951). In difious play model, an agent observes the
history of a co-player’s actions and forms expectest about the co-player’s future actions
based on the frequency of past choice. In essaheeagent tracks the most frequently
selected action in the past. With respect to tipesdictions the agent then chooses the action
maximizing its own rewards. The choice historyysamically tracked via a simple updating
rule essentially counting the co-player’'s frequendéytaking any of the available actions.
Fictitious play represents co-players’ behaviors &ivery basic choice heuristic (namely,
“what the other has frequently chosen previousii,likely be his choice in the future”) and
represents others as sub-intentional level-0 agéntwing up one step in the reasoning
hierarchy, Hampton et al. (2008) introduced an uierfice model. Instead of directly
predicting an opponent’s behavior from the choistony, the model computes the influence
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that one’s own behavior has on the opponent, asguthat the opponent uses fictitious play.
The agent then optimizes its own choices with refsfeethis prediction.

Capturing interactive behavior in a public goodsnga(Figure 2B) Khalvati et al.
(2019) utilized a level-1 sub-intentional socialluence variant of the POMDP framework.
In their version of the task, all other playerghe group were displayed as identical avatars,
thus rendering the social interaction anonymoues, (the identities of the other individual
players could not be inferred). As a consequenaanagputational model for the task is best
when it models only the mean contribution probapibf the entire group and not the
individual tendency of each member of the grougdatribute to the public good. In their
implementation of a POMDP model applied to the mugpbods task, Khalvati and colleagues
used a beta distribution that is updated on eveay to represent the participant’s belief
about the overall group contribution to the puldimod. Effectively, the model represents
each individual player as a level-O agent that skeoto contribute with the probability
defined by the belief distribution. This beliefupdated over time using a Bayesian learning
rule and participants’ observations, capturing ipgdnts’ learning about the groups’
behavior. The decision processes that influencethveinghe group members contribute or
free-ride, as well as any effects of one’s own césion those decision processes, are
neglected. The resulting model does not incorpofatd because it represents the individual
group members as sub-intentional decision makerssalactions are captured by simple
action probabilities.

3.2.3. Fully recursive modeling

A full level-k framework for strategic decisions svantroduced by Devaine and colleagues
(Devaine et al., 2014) to investigate different isien strategies when playing against a
supposedly human opponent vs. a random computet aga simple matching pennies task.
In their model, level-0 opponents’ choice probdigiti p, are assumed to follow a time-
varying hidden distribution®. Observing actions provides information aboutrtreanu? of
the underlying distribution. Similar to a predictierror,u? is updated at each time point with
the difference in observed and expected action:

B = wly+ ) (@ = s(uiy))
t

with s denoting a sigmoid choice function. The opporedgcision probabilitp}**(a) is

then computed with a sigmoid decision function daseu? and an unknown volatility°
and choice temperaturg®. Based on this action probability for the opponehe level-0
agent chooses its own action such that it maximthesindividual expected value. In a
recursive fashion, predictions about the opponestteices for a level-1 agent and higher are
built up from this level-0 decision rule. The agahiodel needs to select both the hidden
variables governing action probabilities and thehsstication (k-level) of the agent’s
opponent. This results in a posterior distributover the opponent’s k-levels and the action
probability variables. These estimates in a fublgursive framework allow examining how
participants represent others’ cognitive abilitiesd their beliefs about how they are
themselves represented by others.

Irrespective of sophistication, all models consédien this section are based on sub-
intentional level-0 models. That means that atltlweest level, others are not represented as
agents with desires, beliefs or intents but as @geimose actions follow simple hidden
distributions. Thereby, at the lowest level thesedais capture others’ actions as non-
intentionally rooted information that is integratédto one’s own decision processes.
However, the level-k framework by Devaine et alDX2) and Hampton et al.’s influence
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model (2008) include higher-level representation¥hese comprise intentional
representations of others, although they are Isiled on a sub-intentional level-O model.
Further, neither basic fictitious play, the infleenrmodel, nor the full level-k reasoning model
include a representation of the environment. Tioeegfthey are only applicable to static
strategic games taking place in a stable environnsech as matching pennies or the
inspection game (Figure 2C) (Camerer, 2003; Deveira., 2014; Hampton et al., 2008).

Yoshida and colleagues (2008) capture strategisidecmaking in the spatial stag-
hunt game (Figure 2F). The spatial variation o$ tsimple coordination game requires long
term action planning with respect to the (fully eb&able) surrounding and the co-player’s
future actions. To integrate both agents’ actinghm environment they extend a basic MDP
model by defining the state space as the producbaih agents’ admissible states.
Consequently, rewards are also defined on the giate space and the other’s actions are a
function solely of the other's private value fulcti Based on the interacting agents’
estimates of their respective goals, the modelsdigrecooperative, coordinated or
individualized behavior. In the next step, optirsethtegies with different levels of recursion
were computed in the extended multi-agent MDP fraark. The resulting k-level MDP
model can capture model-based goal directed agecussively integrating other intentional
agents’ behavior into their decision process. Hawethe underlying MDP is fixed and
environmental properties are not dynamically ledrbg the agents. Hence, the k-level MDP
represents no learning about the environment.

3.3. Interactive models for decision making under uncertainty
In this final model characterization, we introdue® computational frameworks that extend
reinforcement learning to the multi-agent domallgwéing us to formalize interactive social
decision making under social and environmental dacgy. Although both models can be
applied to larger multi-agent scenarios, for thkesaf simplicity and comprehensibility we
only describe a two-agent implementation.

3.3.1. Non-hierarchical modeling

Experience weighted attraction (EWA) (Camerer & HB699) combines simple model-free
RL and belief-based learning in a continuously Weed fashion. Simple RL estimates the
values of one’s own actions given the current rewand updates these value representations
via an experienced-based reward prediction erraloés not explicitly take the actions of the
other players into account. Belief-based learniagséntially fictitious play) estimates the
probability distributions by which the other agetooses its actions, and then adapts the
chosen action accordingly. These two individuahfsrof learning are implemented in EWA
by specific parameter settings (Camerer & Ho, 198@)wever, the power of EWA lies in
the continuous weighting of these two forms of @y by a trade-off parameter(see
below). Thereby, EWA combines a representatiorhefdnvironment, which is learning the
value of own actions given the current state ohiedf with a simple (i.e., sub-intentional)
model of others’ actions. The value of all avaiéahttions is updated according to a learning
rule that combines several variables. The firstalde N(t) is equivalent to previous (pre-
measurement) experience and updated according foltbwing rule:

N(t) =pN(t—1)+ 1.
The parametep is a depreciation term that reflects how fast meward associations can
override prior experience. EWA updates the valualbfavailable actions, but the update
distinguishes between the choserf € a,(t)) and the non-chosen actionst (# a,(t)),

while holding the action of the other playef,(t)) constant.
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(N — DVt = 1) + 8ma(af, ay (1)

Vi) = { JNo
pN(t =DV - D +m(afa)@®)
N(D) ) ifay = a.(t)
Thus, in case of the actual actiarf (= a,(t) ), the value of that action is updated with the
full joint reward (a,(t), a, (t)) whereas the unchosen joint actioh # a,(t) is updated
with the delta-weighted joint reward = m(a,(t), a, (t)). It is one of the key insights of
EWA (detailed in Camerer & Ho, 1999) that this we&d updating of unchosen action
approximates belief-based learning. EWA has beesessfully used in several behavioral
economics experiments (see Camerer et al., 20@)naa decision neuroscience context for
modeling choice behavior in patent race games @hal., 2019, 2011). However, it is a
computational model that provides only a very hasab-intentional, non-recursive
representation of others.

ifa¥ # a.(t)

3.3.2. Fully recursive modeling

A combination of model-based RL and intentionalurstve representations of others’
decision processes is given by the Interactive idgrt Observable Markov Decision
Processes (I-POMDPs) (Gmytrasiewicz and Doshi, RO®&ecall that an (individual)
POMDP agenk forms beliefshi(s,) about the physical states of the environment atigwi
it to plan actions in an uncertain, only partiadlgcessible surrounding. I-POMDPs extend
single-agent POMDPs to the interactive domain byliaing the physical state spagg,, s
with intentional models of the other agegn{(®,,) yielding an interactive state spat®, =
Spnys X 6,,. Consequently, an I-POMDP agent’s beliefs are angér overS but over IS:
bi(is). The key component of the modg! which agentr forms about the second agent
is that it includesy’s beliefs b§,. That means agent’s belief b.(is,)is a probability
distribution over the multidimensional space spahniog physical states and beliefsyofind
hence captures’s belief about the state of the physical environtrendy’s belief. These
aspects of the model are then the agent’s knowlatigat the world and its knowledge about
another individual’'s intentional states. Ageris beliefs are either over the physical states
spaceb} (s) (essentially equal to a single agent POMDP) oséheeliefs themselves can be
over an interactive state space including models (fS,, = S, X 6;). The first case, in
which agenty forms beliefs over physical states only, resuita level-1 model for agent
Agentx represents agemtas an intentional goal-directed level-0 agent #ta$ to maximize
its reward in the world but does not representeact to other agents in the surrounding. In
the latter case, in which ageptforms beliefs abouk’s beliefs, agentc representy as
reasoning about himself. That results in a leveh@del for agentx. Theoretically, as
discussed before, this recursion could go on ariéfbecould be nested infinitely yielding
higher-level agent models. However, as for simpler level-k framewoiks$s reasonable to
assume bounded rationality. Dynamic belief updatmghe I-POMDP framework follows
the same basic Bayesian learning rule as the POM@fate, however it is extended to
include an update of the other’s belief (for dataiée Gmytrasiewicz & Doshi, 2005). This
requires solving models of in bottom-up manner, essentially simulatip'g learning and
decision process. Environmental uncertainty ancedamty regarding the other’'s model of
oneself hamper this process and make model panzat&in and selection challenging.

The I-POMDP framework has been used to model behard reasoning processes
in a multi-round trust task (Figure 2G) (Hula et, &018, 2015) and the centipede game
(Figure 2I) (Doshi, Qu, Goodie, & Young, 2012, DpsQu, & Goodie, 2014). In its
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application to the trust task, the I-POMDP allowednalizing players’ risk aversion and

guilt as well as the recursive representationshef ¢o-player’s risk and guilt parameters.
These parameters define the rate of cooperationttendreakdown and reestablishment of
cooperation between players over the course ofiphlinteractions (Hula et al., 2018).

Using I-POMDP models to capture decision processea centipede game showed that
participants mostly adopt decision strategies oklld or level-2 and that the depth of
recursive reasoning increases in more competiteaarios (Doshi et al., 2012).

While EWA formalizes an agent's own knowledge stateannot model others’
beliefs. Co-player's actions are included by tragkihe frequency of forgone choices.
Thereby, the framework fails to capture the intmmai representations of others’ knowledge
states and resulting decision processes. Thisffsreht from the approach taken by the I-
POMDP framework. By recursively meshing POMDP med&lPOMDP models formalize
high level ToM processes. Others are representedtestional goal-directed agents whose
beliefs are dynamically updated as information akiba environment unfolds. Further, via
recursion, others’ intentional representationsra’s own beliefs, values and motivations can
be formalized and so quantitatively represente@. MROMDP framework is very well suited
to model complex ToM processes in a range of agipdios.

4. Neural responses

In previous sections we addressed the primary fottise typological proposal in this paper,
which draws on a detailed description of social islen-making tasks and their
computational models. We were able to do so, becaisthe wealth and amount of
behavioral studies that have used these tasks laad hiave analyzed the data using
computational models we summarized. The aim of $eistion is to characterize how the
elicitation of neural responses may correspond uo tgpology involving uncertainty and
interactivity in cognitive tasks investigating ToWherefore, our focus is different from those
of previous reviews (Amodio & Frith, 2006; Frith Brith, 2006; Mitchell, 2009; Saxe, 2006)
and meta-analyses (Schurz et al., 2014; Van Ovenaal Baetens, 2009), which parcellated
the available studies based on different ToM tagkg. false belief tasks, trait judgments,
social animations, the mind in the eye task, gfjiategames). However, only few
neuroimaging studies can be described in termstefactivity and uncertainty, and even
fewer have used model-based fMRI analyses (Glasé&he®’'Doherty, 2010), which
represents the current state-of-the-art for regaiomputational models as described above
directly to neuroimaging data. In addition, pre\sowork has presented analyses of the
neuroimaging data (e.g. the specific model-basedrasts) that does not necessarily address
the dimensions of interactivity and uncertaintyttlliefine the typology of this review.
Therefore, in this section we describe the newspponses in terms of (a) representing others’
beliefs and intentions, and (b) recursive ToM.

Although early neuroimaging studies have employaehdus interactive decision-
making tasks like the prisoner’s dilemma and thusttigame, the analyses have generally
focused on the comparison of cooperative vs. coitngebehavior (Rilling et al., 2002), the
faces of cooperative vs. competitive opponents g&inet al., 2004), the reputation to
cooperate (Phan et al., 2010), or simply on goadbasl outcomes (Delgado et al., 2005).
Common to these findings is a robust activatiomhef striatum (ventral and dorsal striatum,
putamen, and caudate head) and vmPFC (Li et @9)20hen contrasting cooperative with
competitive behavior by the other player. This negdes with many (single-agent) reward
learning studies that report reward-related adowain this region (Bartra et al., 2013),
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including reward prediction errors (RPEs) (Garrigmal., 2013) suggesting that pro-social
interactions may act as a social reward.

A substantial number of neuroimaging studies thatehused false belief tasks to
investigate the representation of others’ beliedsehreported activations in bilateral TPJ,
mMPFC, and precuneus (see Schurz, 2014 for a matgse). Several neuroimaging studies
have also investigated representations of othetls mbdel-based approaches. A common
finding among these studies is the involvementhaf mmedial and dorsomedial prefrontal
cortex in these representations, similar to refoots earlier reviews and meta-analyses. For
instance, Behrens et al. (2008) using the origathlisor task reported a social prediction
error in the dmPFC and rTPJ/pSTS, whereas an RRElaied with BOLD activity in the
ventral striatum, consistent with the findings memed. Moreover, Collette et al. (2017)
reported an activation of mPFC correlating with @ated values of an observed player. In
that study, rTPJ was associated with a belief egtreignal which was related to the
uncertainty of current beliefs. In contrast, in #patial stag hunt game (Yoshida et al., 2010)
mPFC activity correlated with a belief entropy sijrcoding the uncertainty about the beliefs
of the other player. Similarly, mPFC also correfatéth the belief estimates of the observed
person’s ability in the expertise learning task ¢Boan et al., 2013), whereas rTPJ was
linked to a belief updating signal. In a similainyemPFC was associated with the difference
in log-likelihood between the influence model andimple fictitious play model in the
inspection game (Hampton et al., 2008), suggeshiagit was related to level-2 beliefs about
influences of the opponent’s choice. Zhang & Glasc(R019) reported that activity in
bilateral TPJ/pSTS correlated with the number deotplayers with opposing decisions. In
that report, vmPFC was related to the expectedevldarned from one’s own experience
compared to the value learned from the other ptayerxcent reward history. Despite the
differences in these tasks and where they fallumimderactivity dimension (see Figure 4A),
the commonality of these neuroimaging findings ssgg that bilateral vmPFC and dmPFC
are often recruited during the representation aotberson’s beliefs and abilities. The
computational role of the TPJ - though clearly astalistly involved in many social decision-
making paradigms - remains elusive. This suggebtt the information processing
contributions of this region are multi-purpose ahdt networks within the region can be
recruited to perform different computations in difnt experimental contexts.

Another region that is often related to representspects of a social partner and
interactions with them is the anterior cingulateteo (ACC). For instance, in comparing the
trust game with a control game, the ACC is reldtetrust decisions (Krueger et al., 2007),
whereas the septal area and the ventral tegmergal are more specifically related to
building and maintaining trust. During a vicaridRk task involving students who learn and
an all-knowing teacher (Apps and Ramnani, 2014 aittivity in the ACC reflects prediction
errors signals for the teacher’s simulated valdefe students’ value estimate. Similarly, in
the expertise tracking task the ACC was involvedamputing a belief updating signal in the
form of an “ability prediction error”. Moreover, Zhet al. (2011) reported belief prediction
errors about the opponent’s actions in the rogp@ligenual) part of the ACC. In the original
volatility learning task (Behrens et al., 2007)vesl as in its social variant, the advisor task
(Behrens, Hunt, Woolrich, & Rushworth, 2008), th€@ correlates with a model-derived
volatility signal of the environment or of the salcpartner. This volatility signal in turn
influences the first-order learning rates that wpdeeward expectations. In the social
influence task by Zhang & Glascher (2019), the A@@resents the value signal computed
from other players’ recent reward histories. In suary, similar to the rTPJ, the networks in
the ACC often, but not exclusively, show activatjpsitterns that covary with error signals
that index violations of expectations about theiremment or of social partners. This pattern
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of error-related activation in the ACC is consistenth its well-documented role in error
monitoring (Holroyd and Coles, 2002).

Few studies have directly investigated recursivéMTand the different levels of
sophistication that make up the highest level intgpology of social decision-making tasks.
Bhatt and Camerer (2005) used a series of matnmRegathat are “dominance-solvable”
meaning that through iterated reasoning, non-optstrategies can be eliminated as one
identifies the equilibrium strategy. During the erments they asked the participants to
simply make their own choice (level-0), estimateawthe other player is going to choose
(level-1 beliefs), and guess what the other pldiarks they will choose (level-2 beliefs).
They identified the left anterior insula and thghti inferior frontal gyrus when contrasting
BOLD responses from games with level-2 vs. levglgstions. In contrast, rACC, posterior
cingulate cortex (PCC), and dIPFC showed strond@2kLB responses when making choices
compared to level-1 beliefs.

Employing model-based fMRI analysis, Yoshida (20L6gd the spatial stag hunt
game and their previously developed computationatleh (Yoshida, 2008), to identify
neural correlates of belief uncertainty (entroplydat the computer agent’s strategies. In that
analysis, the trial-by-trial estimate of the agensophistication level correlated with
activation in the superior parietal lobule, thentad eye fields, and the dIPFC (albeit in much
more dorsal than reported in the Bhatt & Camenau\gt

While in the stag hunt game estimating the leveleaflsoning is done by comparing
model predictions at different levels of reasonitige beauty contest game offers a more
direct estimation. The choices made by the pasditip directly reflect how far participants
iterated their own strategy with those of the engroup. Coricelli and Nagel (2009) used a
version of this game adapted to the fMRI environtraamd instructed participants to make
choices. Participants played against human oppsmanagainst a computer simulation of
group decisions. Using the cognitive hierarchy nid@amerer et al., 2004) to analyze the
behavioral data, they observed that most parti¢gpanowed levels of ToM between level-1
and level-3. Based on the distance between the atatanodel predictions, they classified
participants into high and low levels of reasonifibese subgroups exhibited activations in
the rACC for low, and in the vmPFC and mPFC fohHigvel reasoning.

In the previous two studies, the participants’ cheirevealed their reasoning level in
response to partner or group decisions. Howevernthdeling in these studies did not take
the influence that the participant might exert lo@ other players into account. The inspection
game (Hampton et al., 2008; Hill et al., 2017) addes this aspect of interactive reasoning.
Although the modeling does not explicitly referthe level of reasoning, the authors contrast
different computational models (Reinforcement Lasgn Fictitious Play, Influence Model)
that correspond to different levels of recursivityToM. In particular, the Influence Model
captures the influence that the participants exerttheir opponents thus elevating the
reasoning process to level-2. Expected value sgdarived from the influence model
correlated with brain activity in vmPFC more strhnthan those derived from other, less
sophisticated models. Belief updating signals fithwn influence model also correlated with
activation of the rTPJ. The conviction that one wdkiencing one’s opponent, measured as
the difference in the log-likelihood of the influmn and fictitious play models, showed a
robust activation of mPFC.

Lesion-Deficit Analyses (LDA) have also attemptexl degregate the high-level,
inference-based ToM network, which includes theiameg) already discussed above, from
lower-level, perception-based networks. The ladter sometimes called simulation networks
and include the anterior intraparietal sulcus (3lR&d premotor cortex (PMC) (Van
Overwalle and Baetens, 2009). In a group of patiernth a rare form of glioma that migrates
along large associative fiber tracts, Herbet ef2114) were able to link impairment in high-
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level ToM to surgical disruptions of the arcuatecfaulus, whereas lower-level ToM was
associated with disruptions of the cingulum. Thiepblasizes that the functional ToM
network is built on structural connectivity and daadisrupted by severing significant white
matter connections. These results for high-levelntalzing were later confirmed in
additional glioma patients, which also highlightad superior longitudinal fasciculus and the
fronto-striatal tract, whereas lower-level and fdesed mentalizing was also associated with
the OFC and the uncinate fasciculus (Nakajima .et28l18a, 2018b). Furthermore, a recent
functional connectivity study (Fishman et al., 2pfgund that in contrast to commonly held
beliefs, persons with AS compared to NT control$ileik increased and not decreased
connectivity between the mentalizing and the sitmta networks, giving rise to the
intriguing hypothesis that persons with AS may euffom overconnectivity and — as a result
— a diminished functional segregation between thegenetworks. However, this finding
could only be demonstrated in 15 tightly matchedspaf participants and thus it awaits
replication in a large sample.

In conclusion, while a robust ToM network includio§ TPJ, mPFC/rACC, precuneus,
and vmPFC, and sometimes also the dorsal ACC nisistently recruited in various different
ToM tasks, the specific roles of each of these ndtwmodes remains multidimensional and
requires further specification. Others have attetpd parse the heterogeneity of findings in
the mentalizing network in terms of self-referegciand other-referencing information
processing (Joiner et al.,, 2017). However, theyp al@nclude that different computational
signals appear to be represented in the same tagions for different tasks. The evidence
from the few model-based fMRI studies reviewed h@s® suggests a dynamic recruitment
of these areas when accomplishing related, bunhdistasks that involve different degrees of
interactivity and uncertainty. The array of diffetdasks and the lack of attention to how
these tasks differ has likely contributed to theehmgeneity of interpretations thus far and has
contributed to lack of clarity regarding the comgdignal roles of the nodes in the ToM
network. It is our hope that with additional modelsed neuroimaging studies in this field,
possibly designed along our axes of interactivityd auncertainty, a more precise
characterization of the computations will emerge.

5. Conclusion

When aiming at examining human ToM capacities, dvienportant aspects need to be
considered. First, one should be aware that Thebkind is a highly inclusive concept that
implies a variety of cognitive sub-functions indlugl emotional processes, motivational and
goal-oriented valuational processes, and functiassociated with belief and knowledge
(Schaafsma et al., 2015). Furthermore, as showthanfirst section of this review, even
within one “subsection” of these functions the dtige processes that are likely elicited
differ strongly depending on the specifics of tloeial situation. We argued that the two
dimensions of uncertainty and interactivity canvinle an effective typology of tasks for
understanding the potential for eliciting the vagylevels of ToM in social decision making.
First, we proposed that uneven distribution of infation about the environment among
agents and increased uncertainty about the enveotrikely elicits representations of
others’ belief states. Second, we suggested thagrtainty about others’ motivational traits
and dynamically changing states creates an inalefasetional relevance for representing
others’ motivational traits and states. Finally, prepose that behavioral relevance and the
interdependence of individuals’ actions determihesframe of reference. In tasks that do not
directly link one’s own successful outcome to onespresentation of others’ beliefs and
motivations, the outcomes of others’ choices canubed as an additional source of
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information to guide one’s own actions. Howeversuch task situations there is little to no
incentive to engage in representing the intentipnalf those others. Hence, integration of
this information into individuals’ own frame of es¥ence without taking the others’

perspective is sufficient. Predictions under asymimeelief states and uncertainty, however,
require taking the others’ intentional perspectivieéo account via some level of

representation. Lastly, we suggested that trueomdtiterdependence under uncertainty
requires the integration of one's own and othenséntional perspectives and decision
processes, best allowing for scientific inquiryoirftigh level ToM. Consequently, tasks
aimed at investigating ToM processes in their fidhness should be designed with both of
these dimensions in mind. Further, for a more cetepand ecological validity picture of

ToM processes, tasks should explore rich environsnemd face-to-face interactions.

In the second section of this review we charaateriZzormal computational
frameworks and identified models’ varying capasitte map uncertainty and to integrate
multiple agents’ beliefs, motivations and decispncesses. Computational models provide
guantitative testable descriptions of hidden cagaifunctions and their putative parameters.
Applying models that capture uncertainty and irggvety might allow us to disentangle the
multitude of sub-processes of ToM. We argued thi#trént tasks elicit different grades of
ToM. Validating these claims requires testing aetgirof social decision models on these
tasks to objectively characterize if representatioh others differ in the various scenarios.
Thereby, we might gain a more complete and stradturnderstanding of the cognitive
processes underlying social decisions and wouldable to examine the interplay of
underlying neural systems in more detail.

Here we focused on the importance of interactiwith respect to the interaction of
one’s own and others’ referential cognitive proesssWe note that a call for strong
interactivity has previously been made by propomentt “second-person neuroscience”.
Advocates of this view argue that cognition duringeraction differs fundamentally from
observational scenarios. They argue that not aniecursive thinking elicited only during
interaction, but they also stress qualitative congpas like the feeling of engagement with or
connection to others that come into play duringnattion (Redcay and Schilbach, 2019;
Schilbach et al.,, 2013). Further, they emphasize ithportance of “multi-brain” or
“hyperscanning” studies during which the neuralvagt of multiple interacting agents is
recorded. Hyperscanning recordings have succegsfaén conducted using fMRI and EEG
and have revealed specific synchronizations betwten neural activity of interacting
partners during abstract communication and motia@iching tasks (Dumas et al., 2010;
Stolk et al., 2015).

In line with these views, we argue for investiggtinoM in rich interactive contexts
under environmental and social uncertainty, whiteustaneously recording neural activity
from all interacting individuals. Such designs vatbvide measures that enable the discovery
and parameter estimation of accurate models ofningral coding of ToM in its full
complexity.

Acknowledgements

This review has benefited greatly from the commeftdwo reviewers. Further, we are
grateful for helpful conversations with Martin HetaChristoph Korn, Yuging Lei, Shannon
Klotz, Corinne Donnay, Gregory Peterson, Robertdrish Jonathan Daume, and members of
the L’Arche and Homeboy Industries communities. BBK, MS and JG were funded by a
Collaborative Research in Computational Neuros@egrant awarded jointly by the German
Ministry of Education and Research (BMBF, 01GQ16@8) the United States National

35



1405
1406
1407
1408
1409
1410
1411
1412

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454

Science Foundation (NSF, 1608278). JG and TR wappasted by the Collaborative
Research Center TRR 169 “Crossmodal Learning” fdntby the German Research
Foundation (DFG) and the National Science Foundatib China (NSFC). MS gratefully
acknowledges funding from the John Templeton Fotiowla(Grant 21338) and the
Templeton Religion Trust and the Self, Motivatiand Virtue Project. All authors declare no
conflict of interest.

References

Amodio, D.M., Frith, C.D., 2006. Meeting of mindthe medial frontal cortex and social
cognition. Nat. Rev. Neurosci. 268-277. https:/flgy/10.1038/nrn1884

Apps, M.A.J., Ramnani, N., 2014. The Anterior Cilage Gyrus Signals the Net Value of
Others’ Rewards. J. Neurosci. 34, 6190-6200.
https://doi.org/10.1523/JNEUROSCI.2701-13.2014

Arora, S., Doshi, P., 2018. A Survey of InverserfRmicement Learning: Challenges,
Methods and Progress.

Assaf, M., Hyatt, C.J., Wong, C.G., Johnson, M$thultz, R.T., Hendler, T., Pearlson,
G.D., 2013. Mentalizing and motivation neural fuootduring social interactions in
autism spectrum disorders. Neurolmage Clin. 3, 331-
https://doi.org/10.1016/j.nicl.2013.09.005

Axelrod, R., Hamilton, W., 1981. The evolution @foperation. Science (4489). 211, 1390—
1396. https://doi.org/10.1126/science.7466396

Baillargeon, R., Scott, R.M., He, Z., 2010. Falsdidf understanding in infants. Trends
Cogn. Sci. 14, 110-118. https://doi.org/10.101i64.2009.12.006

Baker, C.L., Jara-Ettinger, J., Saxe, R., Tenenhdu, 2017. Rational quantitative
attribution of beliefs, desires and percepts in anmentalizing. Nat. Hum. Behav. 1,
1-10. https://doi.org/10.1038/s41562-017-0064

Baron-Cohen, S., 1988. Social and pragmatic defisiiutism: Cognitive or affective? J.
Autism Dev. Disord. 18, 379—-402. https://doi.orgliD7/BF02212194

Baron-Cohen, S., Leslie, A.M., Frith, U., 1985. Bdlke autistic child have a “theory of
mind” ? Cognition 21, 37-46. https://doi.org/10.1016/00207(85)90022-8

Barrett, L., Henzi, P., 2005. The social naturg@ririnate cognition. Proc. R. Soc. B Biol. Sci.
272, 1865-1875. https://doi.org/10.1098/rspb.202H03

Bartra, O., McGuire, J.T., Kable, J.W., 2013. Thé&mtion system: A coordinate-based
meta-analysis of BOLD fMRI experiments examiningira correlates of subjective
value. Neuroimage 76, 412-427. https://doi.org/lA06lj.neuroimage.2013.02.063

Behrens, T.E.J., Hunt, L.T., Woolrich, M.W., Rushttg M.F.S., 2008. Associative learning
of social value. Nature 456, 245-249. https://agi10.1038/nature07538

Behrens, T.E.J., Woolrich, M.W., Walton, M.E., Rusiith, M.F.S., 2007. Learning the
value of information in an uncertain world. Nat.uxesci. 10, 1214-1221.
https://doi.org/10.1038/nn1954

Berg, J., Dickhaut, J., McCabe, K., 1995. Trustjpecity, and social history. Games Econ.
Behav. https://doi.org/10.1006/game.1995.1027

Bhatt, M., Camerer, C.F., 2005. Self-referentiaking and equilibrium as states of mind in
games: fMRI evidence. Games Econ. Behav. https.idpl0.1016/j.geb.2005.03.007

Boorman, E.D., O’Doherty, J.P., Adolphs, R., Rangel O’'Doherty, J.P., Adolphs, R.,
Rangel, A., 2013. The behavioral and neural meshasunderlying the tracking of
expertise. Neuron 80, 1558-1571. https://doi.ordA06/j.neuron.2013.10.024

Bora, E., Yucel, M., Pantelis, C., 2009. Theoryronhd impairment in schizophrenia: Meta-

36



1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504

analysis. Schizophr. Res. 109, 1-9. https://doildxd 016/j.schres.2008.12.020

Brown, G., 1951. Iterative solution of games byificus play, in: Activity Analysis of
Production and Allocation. Wiley, New York, pp. 3376.

Bublatzky, F., Pittig, A., Schupp, H.T., Alpers V&, 2017. Face-to-face: Perceived personal
relevance amplifies face processing. Soc. CogredAfiNeurosci. 12, 811-822.
https://doi.org/10.1093/scan/nsx001

Buitelaar, J.K., Van Der Wees, M., Swaab—Barneudldyan Der Gaag, R.J., 1999. Theory
of mind and emotion-recognition functioning in atitt spectrum disorders and in
psychiatric control and normal children. Dev. Poymdthol. 11, 39-58.
https://doi.org/10.1017/S0954579499001947

Burke, C.J., Tobler, P.N., Baddeley, M., Schultz, W10. Neural mechanisms of
observational learning. Proc. Natl. Acad. Sci. 1D%431-14436.
https://doi.org/10.1073/pnas.1003111107

Blyukboyaci, M., 2014. Risk attitudes and the $tagt game. Econ. Lett. 124, 323-325.
https://doi.org/10.1016/j.econlet.2014.06.019

Byom, L.J., Mutlu, B., 2013. Theory of mind: Mecliwms, methods, and new directions.
Front. Hum. Neurosci. 7, 1-12. https://doi.org/B8%/fnhum.2013.00413

Byrne, R.W., 2018. Machiavellian intelligence ragective. J. Comp. Psychol. 132, 432—
436. https://doi.org/10.1037/com0000139

Call, J., Tomasello, M., 2008. Does the chimparmee a theory of mind? 30 years later.
Trends Cogn. Sci. 12, 187-192. https://doi.org/QDal].tics.2008.02.010

Call, J., Tomasello, M., 1999. A non-verbal falsdidf task: the performance of chimpanzees
and human children. Child Dev. 70, 381-395.

Camerer, C., Ho, T.-H., 1999. Experience-Weightd#sagtion Learning in Normal Form
Games. Econometrica 67, 827-874.

Camerer, C., Ho, T., Chong, K., 2003. Models ofriking, Learning, and Teaching in
Games. Am. Econ. Rev. 93, 192-195. https://doildxd/257/000282803321947038
Camerer, C.F., 2003. Behavioural studies of stratibinking in games. Trends Cogn. Sci. 7,

225-231. https://doi.org/10.1016/S1364-6613(03)d089

Camerer, C.F., Ho, T.-H., Chong, J.-K., 2004. A fitige Hierarchy Model of Games. Q. J.
Econ. 119, 861-898. https://doi.org/10.1162/003843502225

Camerer, C.F., Ho, T.H., Chong, J.K., 2015. A psjyadical approach to strategic thinking
in games. Curr. Opin. Behav. Sci. 3, 157-162.
https://doi.org/10.1016/j.cobeha.2015.04.005

Canigueral, R., Hamilton, A.F. de C., 2019. Do BisliAbout Whether Others Can See
Modulate Social Seeking in Autism? J. Autism Deisddd. 49, 335—-348.
https://doi.org/10.1007/s10803-018-3760-1

Charpentier, C.J., O’'Doherty, J.P., 2018. The appibn of computational models to social
neuroscience: promises and pitfalls. Soc. Neurd&;i637—-647.
https://doi.org/10.1080/17470919.2018.1518834

Chaudhuri, A., 2011. Sustaining cooperation in tabwry public goods experiments: a
selective survey of the literature. Exp. Econ.44;83. https://doi.org/10.1007/s10683-
010-9257-1

Collette, S., Pauli, W.M., Bossaerts, P., O’'Dohgdty 2017. Neural computations underlying
inverse reinforcement learning in the human brélie 6, 1-20.
https://doi.org/10.7554/eLife.29718

Coricelli, G., Nagel, R., 2009. Neural correlatésiepth of strategic reasoning in medial
prefrontal cortex. Proc. Natl. Acad. Sci. 106, 918B868.
https://doi.org/10.1073/pnas.0807721106

D’Arc, B.F., Devaine, M., Daunizeau, J., 2018. Aaese Turing-test for predicting social

37



1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554

deficits in people with Autism. bioRxiv 414540.
https://doi.org/https://doi.org/10.1101/414540

Dasgupta, P., Stiglitz, J., 1980. Uncertainty, btdal Structure, and the Speed of R&D. Bell
J. Econ. 11, 1. https://doi.org/10.2307/3003398

Daw, N.D., Dayan, P., 2014. The algorithmic anatahgnodel-based evaluation. Philos.
Trans. R. Soc. B Biol. Sci. 369, 20130478. httgsilbrg/10.1098/rstb.2013.0478

Daw, N.D., Niv, Y., Dayan, P., 2005. Uncertaintysbd competition between prefrontal and
dorsolateral striatal systems for behavioral cdniMat. Neurosci. 8, 1704-1711.
https://doi.org/10.1038/nn1560

Delgado, M.R., Frank, R.H., Phelps, E.A., 2005cBptions of moral character modulate the
neural systems of reward during the trust game. Netirosci. 8, 1611-1618.
https://doi.org/10.1038/nn1575

Devaine, M., Hollard, G., Daunizeau, J., 2014. Soeial Bayesian Brain: Does Mentalizing
Make a Difference When We Learn? PLoS Comput. Bi0l.
https://doi.org/10.1371/journal.pcbi.1003992

Devaine, M., San-Galli, A., Trapanese, C., Bardifag,Hano, C., Saint Jalme, M., Bouret,
S., Masi, S., Daunizeau, J., 2017. Reading wilddsti® computational assay of Theory
of Mind sophistication across seven primate spe€iesS Comput. Biol. 13, 1-24.
https://doi.org/10.1371/journal.pcbi.1005833

Devaine, M., & Daunizeau, J., 2017. Learning alamd from others’ prudence, impatience
or laziness: The computational bases of attitugmadent.PLoS Computational
Biology, 13(3), 1-28. https://doi.org/10.1371/journal.pcbi.5902

Diaconescu, A.O., Mathys, C., Weber, L. a E., Daeau, J., Kasper, L., Lomakina, E.I.,
Fehr, E., Stephan, K.E., 2014. Inferring on themtibns of Others by Hierarchical
Bayesian Learning. PLoS Comput. Biol. 10, €1003810.
https://doi.org/10.1371/journal.pcbi.1003810

Doshi, P., Gmytrasiewicz, P., 2004. A Particledfilig Algorithm for Interactive POMDPs,
in: In Proceedings of Conference on Modeling Othgents from Observation. pp. 87—
93.

Doshi, P., Qu, X., Goodie, A., 2014. Decision-Thatior Planning in Multiagent Settings with
Application to Behavioral Modeling. Plan, Act. InteRecognit. Theory Pract. 205—-224.
https://doi.org/10.1016/B978-0-12-398532-3.00008-7

Doshi, P., Qu, X., Goodie, A.S., Young, D.L., 20Mhdeling human recursive reasoning
using empirically informed interactive partiallysdrvable markov decision processes.
IEEE Trans. Syst. Man, Cybern. Part ASystems Hurdan4529-1542.
https://doi.org/10.1109/TSMCA.2012.2199484

Dufour, N., Redcay, E., Young, L., Mavros, P.L., o, J.M., Triantafyllou, C., Gabrieli,
J.D.E., Saxe, R., 2013. Similar Brain Activatiorridg False Belief Tasks in a Large
Sample of Adults with and without Autism 8.
https://doi.org/10.1371/journal.pone.0075468

Dumas, G., Nadel, J., Soussignan, R., Martinerj&drnero, L., 2010. Inter-Brain
Synchronization during Social Interaction. PLoS Gne
https://doi.org/10.1371/journal.pone.0012166

Dunbar, R.I.M., 2009. The social brain hypothesid &s implications for social evolution.
Ann. Hum. Biol. 36, 562-572. https://doi.org/10.0083014460902960289

Emery, N.J., Clayton, N.S., 2009. Comparative Sdeggnition. Annu. Rev. Psychol. 60,
87-113. https://doi.org/10.1146/annurev.psych.6l/0¥.163526

Emonds, G., Declerck, C.H., Boone, C., Vandervked.M., Parizel, P.M., 2012. The
cognitive demands on cooperation in social dilemmasfMRI study. Soc. Neurosci. 7,
494-5009. https://doi.org/10.1080/17470919.2012.8654

38



1555 Engel, C., Zhurakhovska, L., 2016. When is the o&ooperation worth taking? The

1556 prisoner’'s dilemma as a game of multiple motivesplAEcon. Lett. 23, 1157-1161.
1557 https://doi.org/10.1080/13504851.2016.1139672

1558 Fischbacher, U., Gachter, S., 2010. Social PreteerBeliefs, and the Dynamics of Free
1559 Riding in Public Goods Experiments. Am. Econ. RE80, 541-556.

1560 https://doi.org/10.1257/aer.100.1.541

1561 Fishman, I., Keown, C.L., Lincoln, A.J., Pineda.JMdller, R.-A., 2014. Atypical Cross
1562 Talk Between Mentalizing and Mirror Neuron NetworksAutism Spectrum Disorder.
1563 JAMA Psychiatry 71, 751. https://doi.org/10.100&dgpsychiatry.2014.83

1564  Frith, C.D., Frith, U., 2006. The Neural Basis oéMalizing. Neuron 50, 531-534.

1565 https://doi.org/10.1016/j.neuron.2006.05.001

1566 Gallagher, H.L., Frith, C.D., 2003. Functional inraggof ‘theory of mind.” Trends Cogn. Sci.
1567 7, 77-83. https://doi.org/10.1016/S1364-6613(022306

1568 Garrison, J., Erdeniz, B., Done, J., 2013. Preaticéirror in reinforcement learning: A meta-
1569 analysis of neuroimaging studies. Neurosci. BiokeRav. 37, 1297-1310.

1570 https://doi.org/10.1016/j.neubiorev.2013.03.023

1571 Gernsbacher, M.A., Yergeau, M., 2019. Empiricdufas of the claim that autistic people
1572 lack a theory of mind. Arch. Sci. Psychol. 7, 10281

1573 https://doi.org/10.1037/arc0000067

1574 Gibbons, R., 1992. Game Theory for Applied EcontsniBrinceton University Press.

1575 https://doi.org/10.2307/j.ctvcmxrzd

1576 Glascher, J., Daw, N., Dayan, P., O’'Doherty, 2B10. States versus Rewards: Dissociable
1577 Neural Prediction Error Signals Underlying ModelsBd and Model-Free

1578 Reinforcement Learning. Neuron 66, 585-595.

1579 https://doi.org/10.1016/j.neuron.2010.04.016

1580 Glascher, J.P., O’'Doherty, J.P., 2010. Mod®ssed approaches to neuroimaging: combining
1581 reinforcement learning theory with fMRI data. Wilkyerdiscip. Rev. Cogn. Sci. 1,
1582 501-510. https://doi.org/10.1002/wcs.57

1583 Gmytrasiewicz, P.J., Doshi, P., 2005. A FrameworkSequential Planning in Multi-Agent
1584 Settings. J. Artif. Intell. Res. 24, 49-79. httfui.org/10.1613/jair.1579

1585 Hall, K., Oram, M.W., Campbell, M.W., Eppley, T.MByrne, R.W., de Waal, F.B.M., 2017.
1586 Chimpanzee uses manipulative gaze cues to conegaeaeal information to foraging
1587 competitor. Am. J. Primatol. 79, e22622. httpsilfig/10.1002/ajp.22622

1588 Hampton, A.N., Bossaerts, P., O’'Doherty, J.P., 20@8ral correlates of mentalizing-related
1589 computations during strategic interactions in husn&roc. Natl. Acad. Sci. U. S. A.
1590 105, 1-6. https://doi.org/10.1073/pnas.0711099105

1591 Hedden, T., Zhang, J., 2002. What do you thinknklyou think?: Strategic reasoning in
1592 matrix games. Cognition 85, 1-36. https://doi.08glD16/S0010-0277(02)00054-9
1593 Herbet, G., Lafargue, G., Bonnetblanc, F., Mori@as€er, S., Menjot de Champfleur, N.,
1594 Duffau, H., 2014. Inferring a dual-stream modehwntalizing from associative white
1595 matter fibres disconnection. Brain 137, 944-95fdwdoi.org/10.1093/brain/awt370
1596 Hill, C.A., Suzuki, S., Polania, R., Moisa, M., Gberty, J.P., Ruff, C.C., 2017. A causal
1597 account of the brain network computations undegstrategic social behavior. Nat.
1598 Neurosci. 20, 1142-1149. https://doi.org/10.1033/662

1599 Hill, M.R., Boorman, E.D., Fried, I., 2016. Obsetigaal learning computations in neurons
1600 of the human anterior cingulate cortex. Nat. Commyi2722.

1601 https://doi.org/10.1038/ncomms12722

1602 Ho, T.-H., Su, X., 2013. A Dynamic Level- k Modal $equential Games. Manage. Sci. 59,
1603 452-469. https://doi.org/10.1287/mnsc.1120.1645

1604 Holroyd, C.B., Coles, M.G.H., 2002. The neural bagihuman error processing:

39



1605 Reinforcement learning, dopamine, and the err@tedl negativity. Psychol. Rev. 109,

1606 679—-709. https://doi.org/10.1037/0033-295X.109.4.67

1607 Houser, D., McCabe, K., 2014. Experimental Econsmaied Experimental Game Theory, in:
1608 Neuroeconomics. Elsevier, pp. 19-34. https://dgik®.1016/B978-0-12-416008-
1609 8.00002-4

1610 Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., Camef@.F., 2005. Neuroscience: Neural
1611 systems responding to degrees of uncertainty inamuskecision-making. Science
1612 (5754). 310, 1680-1683. https://doi.org/10.1126&fsce.1115327

1613 Hula, A., Montague, P.R., Dayan, P., 2015. MontddCRlanning Method Estimates

1614 Planning Horizons during Interactive Social ExchargLOS Comput. Biol. 11.

1615 https://doi.org/10.1371/journal.pcbi.1004254

1616 Hula, A., Vilares, I, Lohrenz, T., Dayan, P., Magte, P.R., 2018. A model of risk and
1617 mental state shifts during social interaction. PiGi#nput. Biol. 14, 1-20.

1618 https://doi.org/10.1371/journal.pcbi.1005935

1619 Joiner, J., Piva, M., Turrin, C., Chang, S.W.CJ120Social learning through prediction error
1620 in the brain. npj Sci. Learn. 2, 8. https://doi/a&@1038/s41539-017-0009-2

1621 Jording, M., Hartz, A., Bente, G., Schulte-Ruthdr, Vogeley, K., 2019. Inferring

1622 interactivity from gaze patterns during triadic g@m-object-agent interactions. Front.
1623 Psychol. 10, 1-11. https://doi.org/10.3389/fpsy 201913

1624 Kaelbling, L.P., Littman, M.L., Cassandra, A.R.989 Planning and Acting in Partially
1625 Observable Stochastic Domains. Artif. Intell. 109-134.

1626 https://doi.org/10.1016/S0004-3702(98)00023-X

1627 Kalbe, E., Schlegel, M., Sack, A.T., Nowak, D.Aafbtakis, M., Bangard, C., Brand, M.,
1628 Shamay-Tsoory, S., Onur, O.A., Kessler, J., 20i8s@iating cognitive from affective
1629 theory of mind: A TMS study. Cortex 46, 769—780.

1630 https://doi.org/10.1016/J.CORTEX.2009.07.010

1631 Karg, K., Schmelz, M., Call, J., Tomasello, M., BODiffering views: Can chimpanzees do
1632 Level 2 perspective-taking? Anim. Cogn. 19, 555-%6tps://doi.org/10.1007/s10071-
1633 016-0956-7

1634 Khalvati, K., Park, S. A., Mirbagheri, S., Philipge., Sestito, M., Dreher, J. C., & Rao, R. P.
1635 N., 2019. Modeling other minds: Bayesian infereexglains human choices in group
1636 decision-makingScience Advances, 5(11). https://doi.org/10.1126/sciadv.aax8783
1637 King-Casas, B., Sharp, C., Lomax-Bream, L., LohrdnzFonagy, P., Read Montague, P.,
1638 2008. The rupture and repair of cooperation in editte personality disorder. Science
1639 (5890). 321, 806-810. https://doi.org/10.1126/s0eeh1 56902

1640 King-Casas, B., Tomlin, D., Anen, C., Camerer, CQuartz, S.R., Montague, P.R., 2005.
1641 Getting to Know You: Reputation and Trust in a TRerson Economic Exchange.
1642 Science (5718). 308, 78-83. https://doi.org/10.19¢@énce.1108062

1643 Kleiman-Weiner, M., Ho, M., Austerweil, J., LittmanM.L., Tenenbaum, J., 2016.

1644 Coordinate to cooperate or compete: Abstract gaadisjoint intentions in social

1645 interaction. Proc. 38th Annu. Conf. Cogn. Sci. SQd679-1684.

1646 Kovacs, A.M., Teglas, E., Endress, A.D., 2010. Boeial Sense: Susceptibility to Others’
1647 Beliefs in Human Infants and Adults. Science (6033)), 1830-1834.

1648 https://doi.org/10.1126/science.1190792

1649 Krueger, F., McCabe, K., Moall, J., Kriegeskorte, Kahn, R., Strenziok, M., Heinecke, A.,
1650 Grafman, J., 2007. Neural correlates of trust. PKadl. Acad. Sci. 104, 20084—-20089.
1651 https://doi.org/10.1073/pnas.0710103104

1652 Krupenye, C., Kano, F., Hirata, S., Call, J., Toetlas M., 2016. Great apes anticipate that
1653 other individuals will act according to false b#dieScience (6308). 354, 110-114.
1654 https://doi.org/10.1126/science.aaf8110

40



1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Kumar, S., Rusch, T., Doshi, P., Spezio, M., Glasch., 2019. Modeling cooperative and
competitive decision-making in the Tiger Task, Tine Multi-Disciplinary Conference
on Reinforcement Learning and Decision Making.

Kurokawa, S., Ihara, Y., 2009. Emergence of codfmeran public goods games. Proc. R.
Soc. B Biol. Sci. 276, 1379-1384. https://doi.ofgiD98/rspb.2008.1546

Ledyard, J.O., 1994. Public Goods: A Survey of Expenatl Research, in: Kagel, J., Roth,
A. (Eds.), The Handbook of Experimental Economitisnceton University Press,
Printcton NJ.

Li, J., Xiao, E., Houser, D., Montague, P.R., 2088ural responses to sanction threats in
two-party economic exchange. Proc. Natl. Acad. 8ciS. A. 106, 16835—40.
https://doi.org/10.1073/pnas.0908855106

Loury, G.C., 1979. Market Structure and InnovatiQnJ. Econ. 93, 395.
https://doi.org/10.2307/1883165

Martin, C.F., Bhui, R., Bossaerts, P., MatsuzawaCamerer, C., 2014. Chimpanzee choice
rates in competitive games match equilibrium gameety predictions. Sci. Rep. 4, 1-6.
https://doi.org/10.1038/srep05182

McKelvey, R.D., Palfrey, T.R., 1992. An Experimdriéudy of the Centipede Game.
Econometrica 60, 803. https://doi.org/10.2307/2%9515

Mitchell, J.P., 2009. Inferences about mental ste@ilos. Trans. R. Soc. B Biol. Sci. 364,
1309-1316. https://doi.org/10.1098/rstb.2008.0318

Mitchell, R.L.C., Phillips, L.H., 2015. Neuropsydbgia The overlapping relationship
between emotion perception and theory of mind. bigsychologia 70, 1-10.
https://doi.org/10.1016/j.neuropsychologia.2015Q8.

Mookherjee, D., Sopher, B., 1994. Learning Behawi@an Experimental Matching Pennies
Game. Games Econ. Behav. 7, 62-91. https://dol.Orgp06/game.1994.1037

Moutoussis, M., Dolan, R. J., & Dayan, P., 2016wHeeople Use Social Information to Find
out What to Want in the Paradigmatic Case of Iteenporal PreferenceBL0oS
Computational Biology, 12(7), 1-17. https://doi.org/10.1371/journal.pcbi.2065

Nakajima, R., Kinoshita, M., Okita, H., Yahata, Matsui, M., Nakada, M., 2018a. Neural
networks mediating high-level mentalizing in patgewith right cerebral hemispheric
gliomas. Front. Behav. Neurosci. 12, 1-12. htt@ei/6rg/10.3389/fnbeh.2018.00033

Nakajima, R., Yordanova, Y.N., Duffau, H., Herb®t, 2018b. Neuropsychological evidence
for the crucial role of the right arcuate fascicuin the face-based mentalizing network:
A disconnection analysis. Neuropsychologia 115-189.
https://doi.org/10.1016/j.neuropsychologia.2018)Q4.

Ng, A.Y., Russell, S.J., 2000. Algorithms for ingereinforcement learning. Icml 1, 2.

Norris, A.E., Weger, H., Bullinger, C., Bowers, £014. Quantifying engagement:
Measuring player involvement in human—avatar imgoas. Comput. Human Behav.
34, 1-11. https://doi.org/10.1016/j.chb.2014.01.044

Pearson, A., Ropar, D., Hamilton, A., 2013. A rewviaf visual perspective taking in autism
spectrum disorder . Front. Hum. Neurosci. .

Penn, D.C., Povinelli, D.J., 2007. On the lackdtlence that non-human animals possess
anything remotely resembling a ‘theory of mind.ilB&. Trans. R. Soc. B Biol. Sci.
362, 731-744. https://doi.org/10.1098/rstb.20063202

Phan, K.L., Sripada, C.S., Angstadt, M., McCabe,2010. Reputation for reciprocity
engages the brain reward center. Proc. Natl. Asad.107, 13099-13104.
https://doi.org/10.1073/pnas.1008137107

Premack, D., 2007. Human and animal cognition: {Daity and discontinuity. Proc. Natl.
Acad. Sci. U. S. A. 104, 13861-13867. https://dgi10.1073/pnas.0706147104

Premack, D., Woodruff, G., 1978. Does the Chimparime a theory of mind? Behav.

41



1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754

Brain Sci. 4, 515-526. https://doi.org/10.1016/j&e.2011.1011.1001.7.

Puterman, M.L., 1990. Chapter 8 Markov decisiorcpsses, in: Handbooks in Operations
Research and Management Science. Elsevier, pp4331—
https://doi.org/10.1016/S0927-0507(05)80172-0

Qu, C., Ligneul, R., Van der Henst, J.-B., DrelJeiC., 2017. An Integrative
Interdisciplinary Perspective on Social Dominangerétchies. Trends Cogn. Sci. 21,
893-908. https://doi.org/10.1016/j.tics.2017.08.004

Redcay, E., Schilbach, L., 2019. Using second-pensaroscience to elucidate the
mechanisms of social interaction. Nat. Rev. Neur@; 495-505.
https://doi.org/10.1038/s41583-019-0179-4

Rilling, J.K., Gutman, D.A., Zeh, T.R., Pagnoni, Berns, G.S., Kilts, C.D., 2002. A Neural
Basis for Social Cooperation. Neuron 35, 395-4@pst/doi.org/10.1016/S0896-
6273(02)00755-9

Rosenthal, R.W., 1981. Games of perfect informatmwadatory pricing and the chain-store
paradox. J. Econ. Theory 25, 92—-100. https://dgildr.1016/0022-0531(81)90018-1

Rousseau, J.J., Cranson, M., 1984. A discoursaemjuality, 6th ed. Penguin Books,
Hamondsworth England.

Sanfey, A.G., 2007. Social decision-making: inssginbm game theory and neuroscience.
Science 318, 598-602. https://doi.org/10.1126/ee6r142996

Saxe, R., 2006. Uniquely human social cognitiorrrGDpin. Neurobiol. 16, 235-239.
https://doi.org/10.1016/j.conb.2006.03.001

Saxe, R., Kanwisher, N., 2003. People thinking altltnking people. The role of the
temporo-parietal junction in “theory of mind.” Neimage 19, 1835-1842.
https://doi.org/10.1016/S1053-8119(03)00230-1

Schaafsma, S.M., Pfaff, D.W., Spunt, R.P., Adolphs2015. Deconstructing and
reconstructing theory of mind. Trends Cogn. Scj.68-72.
https://doi.org/10.1016/j.tics.2014.11.007

Schilbach, L., Timmermans, B., Reddy, V., Costl|,Bente, G., Schlicht, T., Vogeley, K.,
2013. Toward a second-person neuroscience. Belawn 8ci. 36, 393-414.
https://doi.org/10.1017/S0140525X12000660

Schmelz, M., Call, J., Tomasello, M., 2011. Chingzes know that others make inferences.
Proc. Natl. Acad. Sci. 108, 3077-3079. https:/fgi10.1073/pnas.1000469108

Schurz, M., Radua, J., Aichhorn, M., Richlan, Fegrfer, J., 2014. Fractionating theory of
mind: A meta-analysis of functional brain imagirigdies. Neurosci. Biobehav. Rev. 42,
9-34. https://doi.org/10.1016/j.neubiorev.2014.02.0

Selbing, I., Olsson, A., 2017. Beliefs about OthAtslities Alter Learning from
Observation. Sci. Rep. 7, 16173. https://doi.ord/@88/s41598-017-16307-3

Senju, A., Southgate, V., Miura, Y., Matsui, T.,ddgawa, T., Tojo, Y., Osanai, H., Csibra,
G., 2010. Absence of spontaneous action anticipdtyofalse belief attribution in
children with autism spectrum disorder. Dev. Psyettbol. 22, 353-360.
https://doi.org/10.1017/S0954579410000106

Senju, A., Southgate, V., White, S., Frith, U., 200lindblind Eyes: An Absence of
Spontaneous Theory of Mind in Asperger Syndromerfse (5942). 325, 883-885.
https://doi.org/10.1126/science.1176170

Shum, M., Kleiman-Weiner, M., Littman, M.L., Tenenbn, J.B., 2019. Theory of Minds:
Understanding Behavior in Groups Through InverseRihg.

Siegal, M., Varley, R., 2002. Neural systems inedlin “theory of mind.” Nat. Rev.
Neurosci. 3, 463—-471. https://doi.org/10.1038/n84

Singer, T., Kiebel, S.J., Winston, J.S., Dolan, REdth, C.D., 2004. Brain Responses to the
Acquired Moral Status of Faces. Neuron 41, 653—66ps://doi.org/10.1016/S0896-

42



1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

6273(04)00014-5

Skyrms, B., 2001. The Stag Hunt. Proc. Addressesmios. Assoc. 75, 31.
https://doi.org/10.2307/3218711

Spezio, M.L., Huang, P.Y.S., Castelli, F., AdolpRs, 2007. Amygdala damage impairs eye
contact during conversations with real people.eurdsci. 27, 3994—-3997.
https://doi.org/10.1523/JNEUROSCI.3789-06.2007

Stahl, D.O., 1993. Evolution of Smartn Players. @aracon. Behav. 5, 604-617.
https://doi.org/10.1006/game.1993.1033

Stolk, A., Verhagen, L., Toni, I., 2015. Conceptadgnment: How Brains Achieve Mutual
Understanding. Trends Cogn. Sci. xx, 1-12. htigheitbrg/10.1016/j.tics.2015.11.007

Surian, L., Caldi, S., Sperber, D., 2007. Attribatof Beliefs by 13-Month-Old Infants.
Psychol. Sci. 18, 580-586. https://doi.org/10.1111467-9280.2007.01943.x

Sutton, R.S., Barto, A.G., 2012. Reinforcement hewy: An Introduction, 2nd ed. MIT
Press, Cambridge, MA, USA.

Touhey, J.C., 1974. Decision Processes, Expectataomd Adoption of Strategies in Zero-
Sum Games. Hum. Relations 27, 813-824.
https://doi.org/10.1177/001872677402700807

Van Overwalle, F., Baetens, K., 2009. Understandihgrs’ actions and goals by mirror and
mentalizing systems: A meta-analysis. Neuroimagé88—-584.
https://doi.org/10.1016/J.NEUROIMAGE.2009.06.009

Vivanti, G., Rogers, S.J., 2011. Action understagdind social learning in autism: A
developmental perspective. Life Span Disabil. 229

Wan Lee, S., Shimojo, S., O’'Doherty, J.P., 2014iddeComputations Underlying
Arbitration between Model-Based and Model-free baay. Neuron 81, 687—699.
https://doi.org/10.1016/j.neuron.2013.11.028

Whiten, A., Byrne, R.W., 1988. The Machiavelliateifigence hypotheses: Editorial., in:
Machiavellian Intelligence: Social Expertise ahd Evolution of Intellect in Monkeys,
Apes, and Humans. Clarendon Press/Oxford UniveRsiggs, New York, NY, US, pp.
1-9.

Wimmer, H., Perner, J., 1983. Beliefs about beliBispresentation and constraining function
of wrong beliefs in young children’s understandaigleception. Cognition 13, 103—
128. https://doi.org/10.1016/0010-0277(83)90004-5

Xiao, Y., Geng, F., Riggins, T., Chen, G., Redd¢ay,2019. Neural correlates of developing
theory of mind competence in early childhood. Neuege 184, 707-716.
https://doi.org/10.1016/j.neuroimage.2018.09.079

Yamakawa, T., Okano, Y., Saijo, T., 2016. Detectimgfives for cooperation in public goods
experiments. Exp. Econ. 19, 500-512. https://dgildr.1007/s10683-015-9451-2

Yoshida, W., Dolan, R.J., Friston, K.J., 2008. Garheory of Mind. PLoS Comput. Biol. 4.
https://doi.org/10.1371/journal.pcbi.1000254

Yoshida, W., Dziobek, 1., Kliemann, D., HeekerenRH Friston, K.J., Dolan, R.J., 2010.
Cooperation and heterogeneity of the autistic mindNeurosci. 30, 8815-8818.
https://doi.org/10.1523/JNEUROSCI.0400-10.2010

Yoshida, W., Seymour, B., Friston, K.J., Dolan,.R2010. Neural Mechanisms of Belief
Inference during Cooperative Games. J. Neuros¢il@044—-10751.
https://doi.org/https://doi.org/10.1523/JINEUROS885-09.2010

Zhang, L., Glascher, J.P., 2019. A network suppgrsiocial influences in human decision-
making. bioRxiv 551614. https://doi.org/https://@ng/10.1101/551614

Zhu, L., Jiang, Y., Scabini, D., Knight, R.T., H34,, 2019. Patients with basal ganglia
damage show preserved learning in an economic gdateCommun. 10, 802.
https://doi.org/10.1038/s41467-019-08766-1

43



1805 Zhu, L., Mathewson, K.E., Hsu, M., 2011. Dissocgbeural representations of

1806 reinforcement and belief prediction errors undestrategic learning 1-6.
1807 https://doi.org/10.1073/pnas.1116783109

1808

1809

44



Highlights
» Theahility to form aTheory of Mind (ToM) constitutes a hallmark of human cognition.
*  Wereview various decision tasks and computational models aimed at ToM.
» Tasks and models are characterized with respect to interactivity & uncertainty.
*  We suggest that the complexity of ToM varies dong these two primary dimensions.



