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Abstract 22 
The ability to form a Theory of Mind (ToM), i.e., to theorize about others’ mental states to 23 
explain and predict behavior in relation to attributed intentional states, constitutes a hallmark 24 
of human cognition. These abilities are multi-faceted and include a variety of different 25 
cognitive sub-functions. Here, we focus on decision processes in social contexts and review a 26 
number of experimental and computational modeling approaches in this field. We provide an 27 
overview of experimental accounts and formal computational models with respect to two 28 
dimensions: interactivity and uncertainty. Thereby, we aim at capturing the nuances of ToM 29 
functions in the context of social decision processes. We suggest there to be an increase in 30 
ToM engagement and multiplexing as social cognitive decision-making tasks become more 31 
interactive and uncertain. We propose that representing others as intentional and goal directed 32 
agents who perform consequential actions is elicited only at the edges of these two 33 
dimensions. Further, we argue that computational models of valuation and beliefs follow 34 
these dimensions to best allow researchers to effectively model sophisticated ToM-processes. 35 
Finally, we relate this typology to neuroimaging findings in neurotypical (NT) humans, 36 
studies of persons with autism spectrum (AS), and studies of nonhuman primates.  37 

 38 
 39 

1. Introduction 40 
 41 
Humans are distinctly skilled at sophisticated social interactions. To successfully engage in 42 
social exchanges, they rely on "Theory of Mind" (ToM). ToM is a concept defined by 43 
Premack and Woodruff (1978) in the highly influential article “Does the Chimpanzee have a 44 
theory of mind?” as “an individual imputing mental states [like beliefs, desires and 45 
intentions] to himself and others […] to make predictions, specifically about the behavior of 46 
other organisms”. In their paper, Premack and Woodruff stressed that ToM need not be 47 
accurate for it to be present (i.e., false inferences often do result from its presence and not 48 
exclusively due to its absence). Further, they differentiated between ToM for motivation (i.e., 49 
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another organism’s valuation, intention, purpose, goal) and ToM for knowledge (i.e., another 50 
organism’s belief states or learned schemas/scripts). Along with this comprehensive 51 
definition, Premack and Woodruff proposed an initial task to probe ToM capacities in 52 
nonhuman primates: they presented short videos to a chimpanzee named Sarah of a human 53 
struggling with simple tasks. Subsequently, Sarah saw photographs of various items, 54 
including the one solving the actor’s problem. Sarah’s ability to select the correct photograph 55 
served as evidence of her being capable of recognizing the problem (i.e., representing the 56 
state of affairs, as well as the actor’s purpose in the scene, so his intentions and goals). This 57 
highlighted that having a Theory of Mind requires a representation of the state of affairs and a 58 
representation of an individual’s purposeful and motivational relationship to that state, i.e., 59 
the individual’s beliefs and values/goals, respectively, in the situation (Wimmer and Perner, 60 
1983). ToM is thus not a unitary process. ToM is instead a category that includes at least two 61 
differentiable social cognitive processes capable of representing the first order beliefs and 62 
first order values attributed to others, along with processes for sharing and integrating these 63 
representations. 64 

Since this initial empirical investigation into ToM in nonhuman primates, 65 
experimental approaches probing and characterizing ToM capacities have been introduced by 66 
psychological and behavioral economics research (Houser and McCabe, 2014; Kovacs et al., 67 
2010; Schurz et al., 2014; Wimmer and Perner, 1983). Neural networks implicated in ToM 68 
were successfully identified using standard neuroimaging methods (Gallagher and Frith, 69 
2003; Schurz et al., 2014; Siegal and Varley, 2002). Further, analyses of neural signals 70 
increasingly drew on quantitative descriptions of covert cognitive processes constituting ToM 71 
via computational models of behavior (Charpentier & O’Doherty, 2018; Hampton, Bossaerts, 72 
& O’Doherty, 2008; Hill et al., 2017; Xiao, Geng, Riggins, Chen, & Redcay, 2019; Yoshida 73 
et al., 2010). Despite the vast success of these approaches, a coherent picture of what ToM is, 74 
how humans and other species engage in it, and which neural mechanisms constitute it, is 75 
missing (Emery and Clayton, 2009; Schaafsma et al., 2015). We argue that in part this is due 76 
to graded differences in the cognitive processes elicited by various ToM tasks. More 77 
specifically, we propose that the extent to which they require an intentional representation of 78 
other individuals and the degree of integration between such representations of others and 79 
one’s own reference frame is highly variable.   80 

Premack and Woodruff’s conceptual differentiation of ToM’s knowledge and 81 
motivational processes has been followed by other investigators, distinguishing between so-82 
called cognitive and affective ToM (Baron-Cohen, 1988; Kalbe et al., 2010; Mitchell & 83 
Phillips, 2015). In these accounts, “cognitive ToM” is primarily focused on explicit 84 
perspective-taking and strategic reasoning about another person’s beliefs, generating causal 85 
inferences and predictions about the other’s behavior. The term “affective ToM” in most 86 
investigations is restricted to cognitive processes of inference about the emotions of others, 87 
such as empathy, emotion recognition and emotion simulation, and typically does not 88 
emphasize goal states or valuations of possible actions. Both cognitive and affective ToM 89 
processes have been investigated in great detail. Examining both lines of research at once 90 
would go beyond the scope of a single article. Therefore, in this current review, we 91 
exclusively focus on perspective taking and valuational and motivational ToM processes 92 
during decision problems. Such processes can be considered affective just as they are 93 
cognitive. However, in this paper, we do not explicitly consider the processes more typically 94 
denoted as affective, such as empathy for emotional states. Instead, we examine how decision 95 
tasks aimed at ToM likely differ with respect to the cognitive functions they elicit. We 96 
present a typology of experimental approaches and cognitive computational models along 97 
two primary dimensions: interactivity and uncertainty. We propose that this typology can 98 
help to interpret existing findings on the behavioral and neural levels and can aid task design 99 
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in future studies. Specifically, we suggest that tasks which combine higher levels of both 100 
uncertainty and interactivity facilitate investigations of and potentially provide greater insight 101 
into high-level ToM. 102 

 103 
1.1. The functional relevance of interactivity and uncertainty in ToM tasks 104 

In the presented typology of ToM tasks, uncertainty refers to either the risk or ambiguity 105 
characterizing associations between actions, states, state transitions, and outcomes (Hsu et al., 106 
2005). Additionally, although formally not covered by uncertainty, we discuss the availability 107 
and accessibility of information in the context of uncertainty. We propose that under 108 
uncertainty and unequal distribution of information between agents, others’ intentional states 109 
likely become highly relevant and distinguishable from one’s own intentional states. 110 
However, task risks or ambiguities must not be so great as to be simply random chance or 111 
there will be little incentive for any learning and therefore little incentive for tracking others’ 112 
intentional states. Uncertainty occurs both for environmental (e.g., state, reward) and social 113 
(i.e., agent) variables, and both are relevant to the roles that ToM plays in choice and 114 
behavior. Environmental uncertainties may arise when joint action-outcome associations or 115 
state transitions are probabilistic, and their dynamical changes are unknown. Social 116 
uncertainty refers to the uncertainty about the other agents’ actions, because their preferences, 117 
goals, beliefs, abilities to track the environmental variables, rationality or stochasticity, etc., 118 
are unknown.  119 

Interactivity (Byom and Mutlu, 2013; Jording et al., 2019) in our proposed typology 120 
of social cognition tasks refers to a combination of the social distance or face-to-face context 121 
(e.g., still photos, recorded video, live video, interactive live video, interactive in person; 122 
Spezio, Huang, Castelli, & Adolphs, 2007), the personal relevance, the task-dependent 123 
consequences of a social cognition task (Bublatzky et al., 2017), and the level of involvement 124 
of multiple agents (Norris et al., 2014). Interactivity is a dimension of socially oriented tasks 125 
that ranges from purely passive spectatorial observation to full consequential interaction. 126 
Thereby, interactivity determines the behavioral relevance of ToM. Behavioral relevance is 127 
understood as the relative importance of making predictions of others’ behavior from their 128 
frames of reference, using those predictions to plan one’s own (re)actions, and so integrating 129 
predictions from ToM into one’s own perspective. 130 

We begin by summarizing a range of relevant ToM tasks from psychology, 131 
economics and decision neuroscience, and characterize the different experimental approaches 132 
based on the two proposed dimensions. We suggest that divergent knowledge about the 133 
environment due to unshared information and asymmetric environmental uncertainties 134 
motivate the representations of others’ belief states while social uncertainties elicit 135 
representations of others’ motivational states. If all information is equally accessible to all 136 
agents involved in a task, participants observing or interacting with other agents have no need 137 
for ToM beyond positing that another rational, competent agent wants to succeed in the task 138 
and has beliefs that correctly conform to the task contingencies. As risk or ambiguity 139 
increases and different information about the environment become available to the 140 
participants and the agents they observe or interact with, participants must distinguish their 141 
own assessment of the environment from the other agents’ assessments (i.e., beliefs about the 142 
states, about the state transitions, or about the reward outcomes). As the other agents’ 143 
motivations, intentions and reasoning processes become unclear an increased demand to 144 
represent motivational states is created. 145 

Second, tasks are characterized with respect to the type of interactivity they include. 146 
We argue that the degree of interactivity and active engagement influences the need to take 147 
others’ perspectives and influences the level of interaction of such representations with self-148 
referential processes. The distinction between self- and other-referential processes in the 149 
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realm of social decision making has proven very useful for the functional relevance of 150 
different brain networks relevant during social learning (Joiner et al., 2017; Qu et al., 2017). 151 
We follow this differentiation and discuss self- and other-referential cognitive processes and 152 
their interaction depending on the varying levels of interactivity in experimental paradigms. 153 
We propose that a task, where participants passively observe others’ actions in a context that 154 
entails no requirement for any response or judgement nor any consequences for the observer, 155 
requires less ToM and less self-referential processing than a task where participants are 156 
personally involved with another agent with gains and losses dependent upon the decisions 157 
made by both. The function of ToM in the latter case would be to enhance the accurate 158 
predictions of the other’s actions and so to improve successful coordination or competition. 159 
Thus, social tasks in which multiple agents interact cooperatively or competitively in real 160 
time with real consequences could foster higher levels of ToM than less interactive tasks 161 
where little or nothing is at stake. In synchronous, interactive, consequential tasks, 162 
participants would be expected to represent another agent’s representation of themselves 163 
(second-level ToM) or even go farther in tasks requiring complex synchronous interaction to 164 
achieve task-relevant goals (Doshi, Qu, Goodie, & Young, 2012, Doshi, Qu, & Goodie, 165 
2014).  166 

In the second section of this review, we examine different computational models that 167 
have been used to quantify the cognitive processes individuals engage in when solving such 168 
tasks and characterize models with respect to the aforementioned dimensions. Lastly, we 169 
interpret neural findings in neurotypical (NT) humans. 170 
  171 
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Figure 1| Observational ToM tasks comprising environmental uncertainty. 172 
(A) In the false belief task, a simple social scenario is presented to a participant. After observing a social scene that comprises a change in 173 
the physical environment that the observed agent is unaware of (inducing a false belief), participants have to predict that observed agent’s 174 
behavior. To successfully do so, participants have to differentiate their own representation of the environment from the observed agent’s 175 
(physically inaccurate) perspective. (B) The trajectory of an agent starting from the bottom right corner of a simple maze-like environment is 176 
presented to participants. The observed agent’s perceptual abilities are limited by occluding walls preventing them from overseeing the 177 
entire scene. The participant takes a bird’s eye view. Based on the path that the agent takes (here indicated by arrows) participants are asked 178 
to indicate the agent’s subjective preferences over available goal states (here: purple, green and orange). (C) In a group decision game, 179 
participants need to learn the value of two dynamically changing probabilistically rewarded choice options. After making their own choice, 180 
the selections made by other players who are learning about the same choice options are revealed and participants are allowed to adjust their 181 
choice if desired. Finally, feedback about the reward outcome associated with the chosen option is presented. (D) Participants observe four 182 
different co-players with varying expertise in a probabilistic value learning task. First, they choose between betting for or against these 183 
agents’ success. Second, they see the observed agent’s choice (their predictions about whether the presented asset would increase or 184 
decrease in value). Last, they receive feedback about whether their bet was correct or not by either winning or losing money, allowing 185 
inference about the others’ expertise and the value of assets. (E) Participants observe the actions of different agents whose preferences they 186 
learned in a pre-test training period. The outcome reward associated with those actions is not revealed to the observer. To infer the 187 
underlying reward distribution, participants need to represent the observed agents’ learning processes and interpret the observed agents’ 188 
actions in light of their preferences. 189 
 190 
  191 
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2. Tasks  192 
 193 

2.1. Observation under divergent knowledge and environmental uncertainty 194 

2.1.1. False belief reasoning and perspective taking  195 

One of the most prominent tasks in ToM research is the so-called false belief task (Figure 196 
1A) first formulated by Wimmer and Perner (1983). It is a short story where the character 197 
Maxi puts a chocolate bar on a shelf and leaves the scene. In Maxi’s absence, his mother 198 
changes the state of affairs by moving the chocolate bar to a different location. Upon Maxi’s 199 
return, the observing participant is asked where Maxi would search for his chocolate. The key 200 
feature in this task is the change in the state of affairs and Maxi’s ignorance of that change, 201 
i.e., Maxi’s false belief. Unknown to Maxi, the contingencies of the environment he acts in 202 
changed. This means, that his limited knowledge about the environment leads him to a false 203 
belief. In contrast, the observing participant has perfect knowledge of the environment. To 204 
correctly predict Maxi’s behavior, observing participants need to differentiate their own 205 
correct belief about the situation from their representation of Maxi’s false belief and respond 206 
based on their representation of Maxi’s mental state. Variants of the false belief task have 207 
been deployed to assess the development of ToM abilities in children, differences in 208 
individuals with Autism Spectrum (AS), and nonhuman species’ abilities to reason about 209 
others (e.g. Baillargeon, Scott, & He, 2010; Baron-Cohen, Leslie, & Frith, 1985; Bora, Yucel, 210 
& Pantelis, 2009; Call & Tomasello, 1999; Dufour et al., 2013; Saxe & Kanwisher, 2003; 211 
Wimmer & Perner, 1983). Common to most of these variations is the use of social scenes that 212 
require judgment about a false belief scenario. Yet, depending on task specifics, findings 213 
about when healthy children develop the ability to theorize about other minds differ. When 214 
explicitly asked, children typically answer questions about an agent’s false belief correctly 215 
from around four years on (Wimmer and Perner, 1983). However, 13-month-old infants show 216 
correct anticipatory viewing behavior in such tasks (Surian et al., 2007) potentially 217 
suggesting an earlier onset of false belief understanding (Baillargeon et al., 2010).  218 

Following a similar general idea as false belief reasoning, Baker and colleagues 219 
(Baker et al., 2017) introduced a perspective taking scenario which required putting oneself 220 
in someone else’s shoes and seeing the world from their eyes. They used maze-like spatial 221 
layouts, an environment well suited for the application of formal decision models, to examine 222 
inferential processes about an observed agent’s beliefs and desires: an observed agent with 223 
unknown preferences is placed in an environment containing different choice options with 224 
varying subjective value to the agent (Figure 1B). At any given trial, only a subset of options 225 
is available in the environment. Additionally, occluding walls prevent the agent from 226 
overseeing the entire space. The agent has to move around to explore what options are 227 
currently available and then choose the option that is most valuable to him. Participants 228 
observe the agent while taking a bird’s eye view. As in the false belief task, participants are 229 
fully informed about the environmental properties, but the observed agent is uninformed 230 
about the availability of goal states. That means, participants and observed agents have 231 
asymmetric knowledge about the environment, and the observed agent is faced with 232 
uncertainty about the availability of goal states. Additionally, the observed agent’s 233 
preferences regarding choice options are unknown to participants. Figure 1B shows an 234 
exemplary situation. Two out of three possible choice options (here indicated by purple, 235 
green and orange) of varying subjective value to the observed agent are available. From the 236 
initial position, the observed agent can only see the orange option. The agent first moves 237 
around the occluding wall but then turns around and returns to the orange option. When asked 238 
to rate the agent’s preferences based on this behavior, participants indicate that green is most 239 
valuable to the agent followed by orange and rate purple as least valuable. In search of the 240 
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most preferred option, green, the agent moved around the wall but returned to the second-best 241 
option, orange, when seeing that only purple, the least favorable option, was available. These 242 
judgments indicate that participants infer the agent’s valuations based on the agent’s 243 
perceptual experience, meaning based on the choice options he can and cannot see, and 244 
attribute preferences to explain the agent’s movements.  245 

In false belief and observational perspective taking tasks, information about the 246 
environment is distributed unequally between participants and observed agents. Fully 247 
informed participants watch and predict agents acting in environments accurately known to 248 
the participants but not the agents. This task element induces a divergence between 249 
participants’ own knowledge about the environment and the observed agents’ knowledge 250 
about the environment. This mismatch is a key factor for triggering reasoning about another 251 
person’s knowledge state. If information about the environment is equally accessible to all 252 
participants and agents, there is little reason to take others’ perspectives as it provides little or 253 
no additional information about the shared state. However, by inducing differences between 254 
one’s own and others’ belief states through unequal distribution of information among 255 
individuals, one expects to elicit cognitive representations conducive to experimental 256 
investigations into the attribution of beliefs to others (i.e. ToM). If task conditions favoring 257 
the formation of cognitive representations of others’ beliefs are weak or absent, then 258 
detection or discrimination between participants’ own belief states and participants’ 259 
representations of others’ belief states becomes impossible. In addition to divergent belief 260 
states, the perspective taking task by Baker et al. (2017) includes dynamic belief updates. As 261 
the observed agent moves around the environment, more information about the possible goal 262 
states becomes available and the observed agent’s belief is updated. To correctly predict 263 
behavior, participants have to track these belief updates leading to an alignment of their own 264 
belief and their representation of the observed agent’s belief. That means, participants not 265 
only have to represent the agent’s belief but also to dynamically update these representations. 266 
Additionally, participants encounter social uncertainty in this task. The observed agent’s 267 
preferences are unknown and need to be inferred from observed behavior. This adds a second 268 
inferential process. In addition to updating the other agent’s beliefs about the environmental 269 
context based on the observation of the agent’s behavior, participants must also infer the 270 
preferences of the other agent. Thereby, a manifold intentional representation of the observed 271 
agent is generated, creating a scenario that allows examining the attribution of beliefs and 272 
preferences at the same time.  273 

However, while in both tasks the observed agent’s intentional states are highly 274 
relevant, participants themselves take a purely observational perspective. They are detached 275 
and removed from the scenario and their judgments and predictions are entirely 276 
inconsequential to the characters and the progressions of the scenes they observe. Thereby, 277 
the prediction process taking place in the observed agents’ reference frames is disconnected 278 
from participants’ self-referential cognitive processes, with the possible exception of a 279 
participant’s motivation to give accurate answers and not to be seen to be in error. 280 

2.1.2. False belief reasoning and perspective taking in individuals with AS 281 

Tasks that use observation under asymmetric distribution of information between observer 282 
and observed agent inform most studies of children and adults with AS. In these tasks, 283 
children with AS often fail to show accurate explicit false belief reasoning (Baron-Cohen et 284 
al., 1985). This is sometimes interpreted as children with AS failing to have ToM. However, 285 
as Premack & Woodruff (1978) noted, having ToM means positing others’ motivations, 286 
intentions, goals and beliefs and does not necessarily entail having accurate ToM. As 287 
Gernsbacher & Yergeau (2019) show, there is no strong empirical evidence in favor of claims 288 
that children, adolescents, and adults with AS lack ToM. Studies making such claims 289 
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generally point to the impaired accuracy rather than complete absence of ToM. Several 290 
findings indicating a specific impairment in ToM in AS might actually be potentially related 291 
to more general impairments, as IQ is a strong predictor of performance on ToM tasks in AS 292 
(Buitelaar et al., 1999). While most recent studies ensure that all participants with AS have an 293 
IQ that is at or above “average intelligence” (i.e., IQ > 85; e.g., Vivanti & Rogers, 2011), 294 
some studies that claim ToM differences continue to demonstrate differences in IQ that are 295 
not controlled for in analyzing group differences (Assaf et al., 2013). Senju et al., (2010) 296 
argue that standard explicit false belief tasks require such high verbal and other cognitive 297 
abilities that they may yield false positives on ToM impairment, at least in the case of 298 
spontaneous ToM. To control for verbal intelligence differences, Senju and coworkers (Senju 299 
et al., 2009) used a passive viewing false belief task. They demonstrated differences in 300 
anticipatory eye movement between NT adults and persons with AS, which they interpreted 301 
as indicating impaired implicit ToM in adults with AS who demonstrated accurate ToM via 302 
explicit false belief tasks.  303 

 Perspective taking tasks similar to Baker et al. (2017) were used to test visual 304 
perspective taking abilities. Level 1 visual perspective taking (VPT1) is the ability to 305 
accurately tell whether another agent is able to see an object or a feature of an object or not. 306 
Level 2 visual perspective taking (VPT2) denotes the ability to understand that two agents 307 
might see the same object differently. Thus, VPT2 focuses on how the same object is 308 
perceived by different agents (Pearson et al., 2013). Pearson and colleagues (2013) reviewed 309 
several papers examining VPT1 and VPT2 in AS. Most studies of VPT1 reported no 310 
differences in AS compared to controls. VPT2 differences in AS were inconclusive as studies 311 
reported conflicting results. In a study of implicit VPT1, Cañigueral & Hamilton (2019) 312 
found that adults with AS showed no preference in looking at recorded video clips of agents 313 
who could see vs. not see. Controls preferred video clips in which the agent could see, 314 
suggesting that social gaze in controls but not in adults with AS may not be influenced by 315 
implicit ToM. 316 

2.1.3. Perspective taking in nonhuman primates 317 

Since 1987, when Premack and Woodruff asked whether a chimpanzee has a Theory of 318 
Mind, experimental investigations have generated competing evidence for and against ToM 319 
in nonhuman primates. In a review summarizing research from the 30 years following this 320 
initial question, Call & Tomasello (2008) conclude that chimpanzees do understand others in 321 
a perceptual-goal perspective taking task but fail to represent them as full intentional agents 322 
with beliefs and desires. However, experimental evidence is variable and inconclusive. 323 
Experimental studies of nonhuman primates often use observational and perspective-taking 324 
tasks under asymmetric environmental uncertainty, starting with the work reported by 325 
Premack and Woodruff (1978). Tomasello and coworkers (Krupenye et al., 2016) used 326 
recorded video clips and measured anticipatory looks by bonobos, chimpanzees, and 327 
orangutans to assess ToM for goal-directed behavior by observed human agents. Most apes 328 
showed gaze that anticipated that human agents would act by those agents’ false beliefs. In 329 
his 2007 review, Premack broadened the false belief tasks to include direct gain and loss 330 
relevance to participating primates, emphasizing the importance of social engagement via 331 
direct consequential outcomes for the observer/participant. For example, nonhuman primates 332 
will wait until a human is not looking before attempting to obtain food that is within reach 333 
but not yet offered. In an interactive task testing level 1, visual perspective taking, home-334 
reared chimpanzees showed strong evidence for understanding which of two human 335 
assistants had sight of a valued food object. Similarly, Tomasello and colleagues (Karg et al., 336 
2016; Schmelz et al., 2011)  used turn-taking, semi-interactive tasks to conclude that while it 337 
is unclear whether chimpanzees are capable of second level visual perspective taking, they do 338 
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understand that conspecifics can use visual information to infer consequential state variables 339 
such as the location of a valued food item. Frans de Waal and colleagues (Hall et al., 2017) 340 
also used semi-interactive tasks with consequential outcomes in collecting evidence that 341 
chimpanzees can engage in tactical deception and can recognize that conspecifics do so as 342 
well. Despite the richness of these findings, their interpretability has been questioned. Some 343 
scholars reason that meaningful examination of ToM in non-verbal species would require 344 
clear definitions of what non-verbal representations of other look like, clearer operational 345 
definitions regarding convincing evidence for ToM, and how this all could be realized 346 
experimentally (Penn and Povinelli, 2007). 347 

2.1.4. Observational learning tasks   348 

Albeit not interactive, observational reinforcement learning paradigms require participants’ 349 
active engagement because their own gains and losses, and potentially those of others, are at 350 
stake. Experimental setups examining observational learning deploy classic single-agent 351 
reinforcement learning problems such as probabilistic reversal learning or multi-armed bandit 352 
tasks. In these tasks, the goal is to choose optimally among multiple competing choice 353 
options. However, participants receive only probabilistic information about choice-outcome 354 
associations, so choosing optimally requires dynamic learning about the environment. During 355 
observational learning, instead of choosing actions and receiving outcomes themselves, 356 
participants observe other individuals selecting between available options for rewards (Hill, 357 
Boorman, & Fried, 2016; Selbing & Olsson, 2017). From observed choice-outcome 358 
associations, participants vicariously learn the underlying reward distributions. In such 359 
settings, the observed agent’s choices determine the information the observer receives about 360 
the environment. Apart from that, the observed agent’s actions and consequently his 361 
representations of the learning problem are irrelevant to the observer. However, work on 362 
preferences alignment has shown that participants that observe others’ preferences in a 363 
decision task are influenced by those traits, even if these are not directly relevant for the 364 
decision problem at hand. Using a social variant of delay discounting, a task that requires 365 
arbitration between smaller immediate and larger future rewards, Moutoussis et al. (2016) 366 
showed that participants’ preferences aligned with others’ after observing their choice 367 
behavior. Devaine and Daunizeau (2017) interpret such attitude alignment as adaptive 368 
behavior in difficult decision problems as it provides additional information on how to react 369 
to a highly uncertain decision situation.  370 

Extending vicarious learning into a more immersive setting, Zhang & Gläscher (2019) 371 
examined the effect of observing multiple other learners while engaging in a probabilistic 372 
reversal learning task oneself: participants choose between two choice alternatives, one 373 
associated with a high probability of winning, the other with a high probability of losing. 374 
Reward contingencies switched after a variable number of trials. After making their own first 375 
choice, the other learners’ choices were revealed and participants received the opportunity to 376 
adapt their decision, i.e., switch to the other option or stay with their initial decision. Thereby, 377 
the task allows for learning from one’s own and others’ experience (Figure 1C). Zhang & 378 
Gläscher found that the stronger the social information diverged from participants’ own 379 
choice (i.e., the more co-players chose the opposite option to themselves), the more 380 
frequently participants switched their choice to go with the group.   381 

A second engaging observational learning paradigm was introduced by Boorman and 382 
colleagues (Boorman et al., 2013): the task mimics a stock market scenario, in which 383 
observed agents had to predict different assets’ changes in value. Participants observed the 384 
agents’ learning success and were asked to bet for or against their choices while the observed 385 
agents completed the task with varying success. Figure 1D shows an exemplary situation with 386 
four agents (green, purple, blue and orange) with different underlying fixed success rates 387 
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(0.3, 0.4, 0.6 or 0.7) that are unknown to participants. In addition, participants themselves had 388 
to occasionally predict the assets’ value development. To perform well in this task, 389 
participants needed to track the properties of a volatile environment (i.e., the value of assets) 390 
as well as the others’ expertise in the task, i.e., the overall correctness of their choices. 391 
Computational modeling results indicated that participants tracked the observed agents’ task 392 
abilities in a two-step process: first, during the choice period they evaluated the observed 393 
choice in light of their own estimate of the asset’s value (i.e., their own representation of the 394 
environment). Second, at outcome presentation they updated their estimate based on the 395 
observed agents’ success rates.  396 

The last variation of observational RL discussed here motivated tracking agents’ 397 
learning by hiding action outcomes while the observed agents’ preferences were known to the 398 
participants (Collette et al., 2017) (Figure 1E). Participants inversely inferred their own 399 
subjective action values from the choices and preferences of the observed agent, assuming 400 
that they would act to maximize their reward. They learned about the environment by 401 
interpreting observed behavior via a representation of the respective agent’s value space and 402 
integrating own preferences with this information to perform actions. 403 

Observational RL tasks instruct participants to maximize rewards in highly uncertain 404 
environments where information is gathered by observing own and/or others’ actions and 405 
outcomes. The need for intentional representations of others varies across those tasks: in 406 
vicarious RL observed actions are merely used to track environmental properties without the 407 
need for an explicit intentional model of another agent. In social influence tasks, other’s 408 
actions are relevant for one’s own decision, but the other agent’s frame of reference is 409 
irrelevant, whereas in inverse RL tasks, the other agent’s action have to be inferred based on 410 
his known preferences.  411 

2.1.5. ToM processes in observational tasks  412 

False belief (Wimmer and Perner, 1983) and perspective taking (Baker et al., 2017) tasks 413 
require no choices from participants but require judgments that depend on the representation 414 
of observed agents’ perspectives on the environment. Most importantly, information about 415 
the context is distributed unequally between the observer and the observed agent, eliciting 416 
divergent knowledge states. This divergence makes the other’s knowledge state relevant for 417 
the observer’s predictions and judgements. However, as no choice or action that would 418 
contribute to the dynamics of the scene is required, this reasoning remains detached from the 419 
observing participants’ own frames of reference. False belief and perspective taking tasks 420 
therefore require representations of others’ intentional states but no integration of these 421 
representations with self-referential cognitive processes.  422 

In observational learning tasks, participants make choices after observing other 423 
agents’ behavior in an uncertain environment. In vicarious RL (Hill et al., 2016), observed 424 
actions determine the observations about the probabilistic reward structures. Similarly, in the 425 
influence task (Zhang and Gläscher, 2019), the group’s choices can be interpreted by 426 
participants as information regarding the quality of their own choices. In the expertise 427 
tracking task (Boorman et al., 2013), uncertainty about the observed agent’s competence is 428 
added. The observed actions have to be evaluated in relation to participants’ own world 429 
knowledge and the estimated expertise. However, modelling results indicate that participants 430 
did not assess expertise from the other agents’ perspective but evaluated choices in their own 431 
valuational frame. In these tasks, it is irrelevant how observed actions came about. Hence, it 432 
is likely that participants integrated observed behavior and action-outcomes into their own 433 
representations of the environmental states and transitions, but others’ perspectives and the 434 
intentional states leading up to their actions were irrelevant to them. This is different in the 435 
inverse learning task by Collette et al. (2017). This experimental setting requires participants’ 436 
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emersion into the other agents’ learning processes, potentially eliciting an intentional 437 
representation of others’ intentional states and evaluation of these representations with 438 
respect to the participants’ own preferences.     439 
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 440 
Figure 2| Interactive tasks in stable and fully observable environments. 441 
(A) The beauty contest game nicely illustrates the concept of recursive reasoning. The goal is to choose a 442 
number between 0 and 100 that is closest to 2/3 of the average of the numbers chosen by all other participants. 443 
It is assumed that depending on their level of reasoning, players choose different values: level 1≈33, level 2≈22, 444 
and so forth. (B) In the public goods game, a group of players is endowed with an initial amount. They can 445 
choose to invest as much as wanted into a public fund. The fund is then multiplied by a fixed factor and equal 446 
splits are returned to all players irrespective of their initial investment amount. Additionally, players get to keep 447 
the money they did not invest into the public fund. (C) (D) (E) Matrix Games, such as matching pennies, 448 
prisoner’s dilemma and stag hunt are defined by a payout matrix. The payout matrix determines both players’ 449 
rewards based on the two players’ actions. Depending on the configuration of the matrix a competitive or 450 
cooperative coordination scenario is created. (F) Grid games like the spatial stag hunt add a spatial component 451 
to games defined by simple payout structures as in the previous examples. To successfully coordinate in the 452 
spatial stag hunt, players need to take the path their co-player is taking through this environment into account; 453 
hence inference about the co-player’s future actions is added to the decision process. (G) In the trust game one 454 
player acts as the proposer, the second as the trustee. Actions are taken sequentially. The proposer can decide 455 
how much of an initial endowment to invest. The investment is multiplied by a known factor. The receiver can 456 
now decide how much of the multiplied investment to return to the proposer. (H) The patent race game 457 
comprises two players, a rich and a poor player. Both players can choose how much of their capital to bid for a 458 
price. The higher bid earns the price, both players’ bids are lost. (I) In the centipede game two players 459 
sequentially choose between “take” or “pass”. When a player takes, unequal rewards are distributed to both 460 
players, and the taking player receives more. Importantly, with each move, rewards increase. However, the 461 
player whose turn it is gains a greater reward than that the waiting player. 462 
  463 
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2.2. Interaction under full environmental certainty 464 
When social scenarios expand beyond mere observation to direct interaction, interacting 465 
individuals’ behaviors and consequently successful outcomes depend more strongly on their 466 
thought processes becoming interdependent. This means, in situations in which an agent A’s 467 
actions are relevant to a second agent B while also B’s actions are relevant to A, their 468 
reasoning processes may become recursive (in the sense of “A thinks that B thinks, that A 469 
thinks that B will do XYZ.”) (Camerer, Ho, & Chong, 2004). This increase in interdependent, 470 
or higher level, ToM is even more likely the more that successful task outcomes depend on 471 
higher level ToM. To examine reasoning processes of this kind, behavioral game theory uses 472 
a range of simple yet very powerful interactive tasks, generally called “games”. A game in 473 
this sense is a multi-agent decision situation where the actions of all participating agents 474 
affect each other. That is, each individual’s success (usually defined as maximizing the 475 
individual reward) depends on others’ choices. Assuming complete and optimal rationality of 476 
all interacting agents (Gibbons, 1992), the field was initially concerned with computing 477 
optimal solutions to such games. These solutions are generally termed equilibrium states. 478 
Deviating from these equilibrium states would be detrimental for all agents. The most famous 479 
example of such a state is the Nash equilibrium. However, more recently, experimental 480 
economics and behavioral game theory have focused on more descriptive rather than 481 
exclusively normative questions, exploring which factors affect actual human social 482 
decisions, which are often suboptimal from the perspective of rational choice theory 483 
(Camerer, 2003).  484 

Recent reviews summarize a multitude of studies that deploy a variety of strategic 485 
games and examine the effects of instructions, framing, incentives, and many other highly 486 
relevant factors driving human interactive decision-making (Houser and McCabe, 2014). 487 
Here, we can neither list all existing games, nor summarize the effect of the different factors 488 
affecting strategic behavior listed above. We merely pick a subset of characteristic economic 489 
games and discuss them with respect to our two defining dimensions: interactivity and 490 
uncertainty. Furthermore, although classic economic research often tests strategic behavior in 491 
one-shot scenarios, we only consider recurring interactions. In everyday life, humans tend to 492 
interact with the same individuals more than once. Moreover, repeated interactions allow for 493 
sophisticated predictions about others’ behavior based on regularities in their strategies or on 494 
built-up expectations about their motivational states.  495 

2.2.1. Anonymous group interactions 496 

The beauty contest game (Figure 2A) illustrates the concept of recursive reasoning in more 497 
detail: a group of individuals anonymously chooses between a number between 0 and 100. 498 
The goal in the task is to choose the number closest to 2/3 of the average of the numbers 499 
chosen by all players. According to cognitive hierarchy theory (Camerer, Ho, & Chong, 500 
2003), people engage in reasoning processes of varying levels of sophistication to solve this 501 
problem: A very basic player, so called level 0, randomly chooses a number. A more 502 
sophisticated level 1 player assumes all others to act at level 0, resulting in an average of 50, 503 
and chooses 33 (2/3 of 50). A level 2 player considers the others as level 1 players yielding 504 
and optimal response of 22 (2/3 of 33), and so on. Such recursive reasoning could in principle 505 
extend ad infinitum, leading to the optimal equilibrium of 0. Nevertheless, on average, people 506 
select numbers between 25 and 40 suggesting a reasoning level of 1 or 2 in this task setting, 507 
but the variance in choices is large and groups of varying analytical training (e.g. those with a 508 
PhD in economics compared to high school students) show highly different means (Camerer, 509 
2003; Camerer, Ho, & Chong, 2015).  510 

The public goods game (Figure 2B) deploys anonymous group decisions to study 511 
fairness and reciprocity in a situation where narrow individual interests may conflict with the 512 
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gains or losses across an entire group (Houser and McCabe, 2014; Khalvati et al., 2019). All 513 
members of a group are endowed with the same initial amount on each trial. They may 514 
choose how much of their individual money to secretly invest in a public fund. The money in 515 
this fund is then multiplied by a known factor and equal shares are distributed to all players 516 
irrespective of whether they gave or chose not to give to the public fund. Players may choose 517 
to keep all of their money on a trial, in which case they have their initial endowment plus 518 
their equal portion of the group distribution from the public fund. This means players can 519 
choose to cooperate by investing into the public fund, but they can also “free-ride” by taking 520 
their share of the others’ investment without investing themselves, maximizing only their 521 
individual reward. However, free-riding is known to reduce the group’s overall investment in 522 
the public fund, especially as more people in the group choose to free-ride as they see others 523 
free-ride. This means that everyone, including the free-riders, receives a lesser distribution. 524 
Consequently, players need to consider their own actions’ effect on the group’s behavior to 525 
maximize their outcomes. Overall, people invest about half of the initial endowment although 526 
the cooperation rate drops over repeated interactions if the group members remain the same 527 
(Ledyard, 1994). Free-riding for a given trial also increases with increasing numbers of free-528 
riders on the previous trial. But not all participants show this pattern. Participants who 529 
conditionally cooperate or go beyond reciprocation generally show greater attention to 530 
others’ preferences and expectations, especially over multiple trials involving the same group 531 
members (Chaudhuri, 2011). Yamakawa and coworkers (Yamakawa et al., 2016) partnered a 532 
participant with a computer on the public goods task. Participants were informed that the 533 
amounts they gave would have no effect on the computer’s predetermined investment into the 534 
public fund, and so no effect on the participant’s own gains. Under these conditions of full 535 
lack of interactivity and full environmental certainty, participants exhibited near 100% free-536 
riding behavior. Fischbacher & Gächter (2010) showed that conditionally cooperating 537 
participants in the public goods task were sensitive to the heterogeneity of agent preferences. 538 
Computational models predict that greater environmental uncertainty in public goods tasks 539 
could elicit greater sustained cooperation through attention to the preferences of others in the 540 
group (Kurokawa and Ihara, 2009). 541 

Beauty contest and public good games immerse participants in an interactive scenario, 542 
where actions of all involved individuals directly affect each other. However, as the 543 
interaction takes place at the anonymous group level, effectively assessing how participants 544 
represent others as distinct individuals with individually different reasoning processes is not 545 
possible. Instead, time-varying average group level variables are the target of analyses. For 546 
example, in the beauty contest, one estimates the group’s level of sophistication. In public 547 
goods games, one estimates the group’s preferences relating to investment. This requires 548 
observing and learning about these variables as interactions continue and so resolving social 549 
uncertainty. Hence, instead of explicit recursive reasoning about other individuals’ specific 550 
cognitive processes, participant models focus on the recursive reasoning about the group as a 551 
whole.  552 

2.2.2. Dyadic games 553 

Dyadic games (i.e., those involving two players) allow for more direct interaction and 554 
individually focused ToM than do anonymous group tasks. First, we consider strategic two-555 
player games entirely defined by a single payoff matrix: conditioned on both players’ actions 556 
a payoff matrix alone determines individuals’ rewards. Well-known examples comprise 557 
“matching pennies” (Mookherjee and Sopher, 1994; Touhey, 1974) (as variant also known as 558 
“hide and seek”, “inspection game”, or “rock, paper, scissors”), “prisoner’s dilemma” 559 
(Axelrod and Hamilton, 1981) (Figure 2C to E), and “stag hunt” (Rousseau and Cranson, 560 
1984; Skyrms, 2001). Matching pennies is a zero-sum game fully defined by a competitive 561 
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payoff structure. One player’s win determines the opponent's loss and vice versa (Figure 2C). 562 
Stag hunt constitutes a cooperative game which requires coordination between partners to 563 
obtain the highest possible rewards: jointly going for the large reward (i.e., both hunting the 564 
stag instead of going for smaller individual reward, the hare) yields the maximal payoff for 565 
both players (Figure 2E). The famous prisoner’s dilemma incorporates both, competition and 566 
coordination. Both players have the option to “cooperate” or “defect”. When joint actions are 567 
uncoordinated (i.e., one player choose cooperates and the other defects), the defecting player 568 
gets the best outcome, while the cooperating player receives the worst outcome (Figure 2D). 569 
Coordination (both players choose identical actions) averts one’s big loss and leads to a 570 
symmetric, but suboptimal outcome for both players.  571 

Spatial variants of these simple matrix games, also referred to as grid games, have 572 
been created by adding two-dimensional grid worlds to the elementary payoff structure of 573 
fully cooperative and social dilemma type of games (Kleiman-Weiner et al., 2016; Shum et 574 
al., 2019; Yoshida et al., 2008). In these grid worlds, the underlying payoff structure of a 575 
game is preserved, e.g. in a spatial stag hunt jointly catching the stag yields the highest 576 
reward (Figure 2E), but additionally coordinated long-term action planning is required 577 
(Figure 2F). The rate of cooperation in grid games depends on the underlying payoff 578 
structure, such that there are higher cooperation rates in pure coordination games and lower 579 
cooperation rates in dilemma type of scenarios (Kleiman-Weiner et al., 2016). Yoshida and 580 
colleagues showed that cooperation rates also depend on the strategy of each partner: They 581 
found higher cooperation rates with partners of higher sophistication level (Yoshida, 582 
Seymour, Friston, & Dolan, 2010; Yoshida et al., 2008).  583 

2.2.3. Bargaining games 584 

The last group of interactive games considered here, including the “trust”, “patent race” and 585 
“centipede” games, consists of simple bargaining environments (Sanfey, 2007) (Figure 2G to 586 
I). In the trust game (Berg et al., 1995), one of two players, the investor, is endowed with a 587 
certain amount of money (Figure 2G). The investor decides how much of that amount is to be 588 
invested with the other player, the trustee. Upon investment, the money is multiplied by a 589 
fixed factor and the trustee can then decide how much of the resulting amount to return to the 590 
investor. When the investor invests a lot and the trustee returns a fair share of the multiplied 591 
investment, from the perspective of both players, both players mutually benefit. However, if 592 
the trustee does not return at least the invested amount, the investor loses money and a cycle 593 
of distrust begins. This tends towards the investor making investments of less money, which 594 
lowers payoffs for both players. In a multi-round trust game, players commonly follow a tit-595 
for-tat strategy. They cooperate when the co-player cooperated in the previous round and 596 
likewise do not cooperate (lower the amount of monetary transfer) following non-cooperative 597 
behavior. But both, investments and returns, slightly reduce over time (King-Casas et al., 598 
2008, 2005). However, some trustees show “coaxing” behavior when investors’ investments 599 
decrease substantially and they return a larger share of the multiplied investment to reassure 600 
the investor of their trustworthiness (King-Casas et al., 2008). These findings indicate that 601 
behavior in the trust game relies on reasoning processes on how actions affect a co-player’s 602 
impression of one’s own trustworthiness and cooperativeness. In the patent race game 603 
(Dasgupta and Stiglitz, 1980; Loury, 1979), two players, competing for a prize, receive initial 604 
endowments (Figure 2H). However, one player receives more and is “richer” than the 605 
opponent. Both players simultaneously bid for the price. The player that offers the larger 606 
amount wins the prize but loses his investment, while the second player loses his investment 607 
and also the prize. To maximize their returns, players need to invest as little as possible but as 608 
much as necessary to outbid the opponent. Based on their opponent’s choice history, 609 
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participants can make predictions of their opponent’s next offering. Further, players can 610 
assume that their partner is predicting themselves, triggering recursive reasoning processes.  611 

In the centipede game (Rosenthal, 1981) (Figure 2I), two players take turns at 612 
choosing between keeping a pot of money or passing it on to the co-player. If the first player 613 
passes the money on and the co-player keeps in the next round, the first player’s outcome is 614 
slightly lower than if he would have kept it. However, after a round of passing by both 615 
players, both players’ outcomes increase. As in the trust task, the centipede game requires 616 
reasoning about how one’s own behavior will affect the co-player’s future actions, especially 617 
whether that person will reward or punish mistrusting choices, respectively. Additionally, 618 
participants could engage in representing and reasoning about their partners’ representation 619 
and reasoning about them, and so on. For instance, a fully rational and optimal player solves 620 
the centipede game by backward induction: “in order to receive the maximum reward at the 621 
end, the other person has to see the advantage of passing, which implies that I have to pass 622 
also,” etc. Such reasoning quickly reveals that the optimal solution is to take the money in the 623 
first step, thus insuring at least a minimal reward. However, humans often advance the game 624 
to a later stage (Hedden and Zhang, 2002; McKelvey and Palfrey, 1992) potentially due to 625 
their limited capacity for complete backward reasoning all the way through (Ho and Su, 626 
2013) or because they recognize the mutual long term benefit of reciprocating and/or 627 
altruistic behavior. 628 

2.2.4. ToM processes in interactive games  629 

This brief overview of the characteristic features of game-theoretic tasks indicates how 630 
interdependent decision processes are favored in interdependent designs. The ability to 631 
strategically respond cooperatively or competitively in these tasks requires forming a 632 
representation of another agent’s motivational states and reasoning processes and types, e.g. 633 
whether the other person follows win-stay-lose-shift, tit-for-tat, choses actions at random, etc. 634 
(Axelrod and Hamilton, 1981). Individual state and trait variables such as risk aversion, 635 
ambiguity aversion, fairness, trust, and greed come into play in dilemmas and bargaining 636 
tasks (Engel and Zhurakhovska, 2016). 637 

We can perceive the dimensions of uncertainty and interactivity in these tasks, and 638 
map those onto how likely they elicit ToM at all as well as how likely they elicit deeper 639 
levels of recursion in ToM. In all interdependent tasks, irrespective of the specific payoff 640 
structure, whether they are cooperative or competitive, players’ choices and outcomes are 641 
bound together in real time, thus favoring active recursive reasoning on a trial-by-trial bases. 642 
Further, if one’s own and the others’ interests diverge, evaluating joint decisions requires 643 
greater cognitive effort (Emonds et al., 2012). All tasks discussed in the previous section are 644 
strong in attempting to maximize social uncertainty. In the fully cooperative stag-hunt game, 645 
for example, both players’ overall goals can be assumed to be aligned given the cooperative 646 
setup. Therefore, motivational variables tend to be less important in this scenario, but 647 
uncertainty emerges from individuals’ risk aversion (Büyükboyacı, 2014). However, these 648 
tasks do not present participants with uncertain environmental contexts or include uneven 649 
distribution of information between agents. Consequently, while success in these tasks 650 
depends on representing others’ motivational states and individual character traits, etc., none 651 
of these tasks requires updating representations of others’ beliefs about the states or situations 652 
constituting the environment. To drive participants to engage in ToM more consistently over 653 
the course of a task, and to represent of others’ motivational and knowledge states, we need 654 
tasks that expand on both social and environmental uncertainties.      655 
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2.2.5. Strategic interaction in persons with Autism Spectrum 656 

The vast majority of investigations into ToM abilities in autism spectrum (AS) has been 657 
conducted using false belief and perspective taking tasks. However, more recently strategic 658 
games and computational cognitive modeling have been deployed to examine strategic 659 
reasoning abilities and differences in individuals with AS. In a “reverse Turing-test” (D’Arc, 660 
Devaine, & Daunizeau, 2018) persons with AS and neurotypical (NT) controls played “hide 661 
and seek” (similar to matching pennies, Figure 2C). In this competitive game one individual 662 
wins, if the opponent’s choice mismatches. For example, if a participant hides behind a tree 663 
and the opponent searches behind the wall, the participant wins. Using social and non-social 664 
framing, D’Arc and colleagues (D’Arc et al., 2018) showed that strategies of persons with AS 665 
did not differ between a supposedly human or computer opponent, while NTs successfully 666 
competed in the social but not in the non-social condition. Further, persons with AS 667 
successfully competed against fictitious opponents modeled using random and simple 668 
fictitious play (a strategy based on the opponent’s preceding choice frequency) but failed in 669 
competition against opponents following higher level recursive models. These results support 670 
findings from the first quantitative examination of recursive social reasoning in AS by 671 
Yoshida et al. (2010). Using the spatial stag hunt game (Figure 2F) with adults with autism, 672 
they found that some individuals with AS exhibited extreme choice behavior, such that they 673 
never cooperated or never competed. This patter was absent in NTs. The authors showed that 674 
the severity of AS symptoms correlated with AS participants’ abilities to successfully 675 
compete against recursive decision strategies. These first studies quantifying strategic 676 
behavior in persons with AS using computational models provide fine-grained insight into the 677 
ToM differences during strategic interaction in AS. 678 

2.2.6. Strategic interactions in nonhuman primates  679 

A focus on ToM tasks developed especially for and applied to understanding ToM in 680 
nonhuman primates is necessary for a full understanding of how ToM relates to evolution in 681 
simiiformes, especially to the roles of cooperation and competition in the evolution of 682 
hominids and hominins. Coordinated cooperation and competition appear to have played 683 
critical roles in the evolution of simiiform brains and intelligences. Within the social brain 684 
account (Dunbar, 2009), which is the hypothesis that primates’ large brain volume and 685 
complex social cognition developed in response to the demands in increasingly complex 686 
social groups, cooperation and affiliative group bonding are more prominent as the driving 687 
forces in cognitive and brain evolution. This view has support from accounts that argue for a 688 
more important role of pro-social behaviors in facilitating in group bonding (Barrett and 689 
Henzi, 2005). On the other hand, the Machiavellian hypothesis (Whiten and Byrne, 1988) 690 
focusses on the evolution of sophisticated ToM by emphasizing competitive interactions and 691 
the need to outperform others in the competition for resources.  692 

Little is understood about the cognitive and neural systems underlying coordinated 693 
cooperation and competition. In the absence of computational evidence, there are ongoing 694 
debates about whether evolutionary costly expansions of the primate brain owe more to 695 
increased need for cognitive resources, including ToM, to cooperate (Dunbar, 2009) or to 696 
manipulate and dominate (Byrne, 2018). Recent computational approaches, drawing on 697 
several of the task designs reviewed here, lend insight to these questions about the role of 698 
ToM in evolutionary history. Devaine and colleagues (2017) examined seven different 699 
nonhuman primate species’ responses in hide and seek games. It was found that all species 700 
showed less sophisticated behavior than humans and that ToM abilities varied with species’ 701 
overall brain volume but not social group size. The authors suggest these findings support a 702 
general intelligence rather than a social brain hypothesis, such that the evolution of 703 
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sophisticated ToM was determined by overall increasing cognitive abilities rather than in 704 
response to the increasing complexity of social communities. Comparing the behavior of 705 
chimpanzees and humans in a competitive inspection game, Martin and colleagues (Martin et 706 
al., 2014) found chimpanzees’ choices to be much closer to equilibrium (i.e. optimal behavior 707 
according to norms of rational choice theory), than the choices made by humans. 708 
Chimpanzees followed rational choice theory while humans depart from it in favor of more 709 
cooperative choices. This could be due either to a greater propensity for cooperation in 710 
humans when interacting in small groups with relatively low stakes, to the fact that humans 711 
depend on language to make optimal choices, or to some combination of both of these 712 
possibilities.  713 
  714 
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 715 

716 
Figure 3| Interactive decision tasks under uncertainty 717 
(A) In the advisor task one participant takes the role of the advisor, the second of the advisee. The advisee has to 718 
make choices on a probabilistic lottery with high uncertainty. Correct choices move the advisee forward on a 719 
progress bar, incorrect choices send the advisee backwards. Additionally, if the advisee finishes in two 720 
predefined regions, the advisee receives a bonus of +10 or +20 but not the advisor. The advisor receives more 721 
accurate information about the outcome of the lottery and can choose to send advice to the advisee. However, 722 
the advisor’s bonus regions are defined differently than the advisee’s bonus regions, creating a conflict via 723 
competing interests. (B) The tiger task simulates a simple game show scenario: two players are faced with two 724 
doors. Behind one is a pot of gold (a positive reward of +10) behind the other door is a tiger (a large negative 725 
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punishment of -100). The players have to choose between three choice options: (1) listen (providing 726 
probabilistic information about the tiger’s location at a small cost of -1); (2) open the left door; or (3) open the 727 
right door. Depending on the reward configuration, competitive (left) or cooperative (right), co-players have to 728 
race to identify and open the door of the gold or they have to coordinate responses in identifying and opening 729 
the door to the gold, respectively.  730 
  731 
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2.3. Interaction under social and asymmetric environmental uncertainty  732 
Very few experimental approaches to date have combined asymmetric distribution of 733 
information, environmental uncertainty and interactivity. One example is the advisor task 734 
(Behrens et al., 2008; Diaconescu et al., 2014) (Figure 3A) in which two participants, an 735 
advisor and an advisee, interact in a gambling task. The advisee has to choose between two 736 
uncertain lotteries, while the advisor, who is provided with more accurate information on 737 
outcome probabilities, can send simple cues to the advisee on which action to take. After a 738 
correct choice the advisee moves forward on a progress bar and receives a small reward, but 739 
an incorrect choice sends the advisee backwards and results in a small financial penalty. 740 
When the advisee moves into pre-specified regions on the progress bar associated with either 741 
a bonus for the advisee or the advisor, there is an additional payout of $10 or $20 for one or 742 
the other, but not both. These regions are fully disclosed to the advisor, but the advisee only 743 
knows their own bonus regions, while being ignorant about those of the advisor. These 744 
different regions are designed to manipulate the motivational states of the advisor. During 745 
one phase of the game, the advisor acts to ensure that the advisee moves into one of the 746 
advisee’s bonus regions, providing veridical advice about the outcome probabilities. Other 747 
phases of the game incentivize the advisor to hinder the advisee from reaching the advisee’s 748 
own bonus region by providing false advice. A participant who uses no ToM in the task 749 
would ignore the advice and would simply need to model the likelihood that the lottery 750 
corresponds to the true outcome (i.e. environmental uncertainty). A participant that takes into 751 
account the asymmetric distribution of information about the lottery between advisee and 752 
advisor, and advisor’s and advisee’s competing interests is likely to use ToM. Modeling 753 
results by Diaconescu and collegues (2014) indicate that participants use ToM in the advisor 754 
task. They found that choices made by participants that took the role of the advisee were best 755 
explained by a model that included a parameter estimating the advisor’s current tendency to 756 
be accurate and a parameter estimating the advisor’s likelihood of deception across the trials 757 
(i.e., social uncertainty). Participants did better when they estimated advisors to be reliable 758 
and accurate, and in fact advisors gave accurate information about 75% of the time.  759 

A powerful experimental setting combining full interactivity and uncertainty is the 760 
multi-agent tiger task (Doshi and Gmytrasiewicz, 2004; Kumar et al., 2019) (Figure 3B). In a 761 
scenario that mimics a game show setting two players have to learn which of two doors hides 762 
a pot of gold (reward of +10) and which hides a dangerous tiger (punishment of -100). They 763 
can choose to open one of the doors or sample probabilistic information about the location of 764 
the tiger and about the other player’s action at a small cost (-1). If a door is opened, the 765 
tiger’s location is randomly reset, and the game starts anew. A superimposed reward structure 766 
incentivizes players to cooperate or compete. In the cooperative setting, after each action 767 
players receive half of the partner’s outcome while in the competitive scenario half of their 768 
partner’s outcome is subtracted from their own outcome. In other words, under competitive 769 
conditions, an opponent’s loss results in a win for oneself, under cooperative conditions the 770 
partner’s loss results is also one own’s loss. Additionally, periods of divergent knowledge 771 
states between co-players occur when one chooses to sample more information while the 772 
second opens the door. An opening action provides a short window of more information. 773 
First, the co-player’s choice is revealed. Second, after opening the door, the player finds out 774 
where the gold is and knows that the location of the gold and the tiger will be reset, so that 775 
previously sampled information needs to be discarded. This asymmetric knowledge about the 776 
state of the gold and tiger is an advantage in the competitive setting but detrimental for the 777 
cooperative condition. In the competitive setting players race to open the correct door before 778 
the opponent does, while they still need to sample enough information to avoid the tiger. The 779 
cooperative scenario incentivizes coordinated behavior over individual learning about the 780 
reward distribution. This typically results in fewer trials spend sampling the information in 781 
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the competitive setting, which leads to riskier choices, but also has the potential to beat the 782 
opponent to the gold (Kumar et al., 2019).  783 

2.3.1. ToM processes during interaction under social and environmental uncertainty  784 

Both the advisor and multi-agent tiger tasks include asymmetric distribution of information 785 
and high environmental and social uncertainty. All participants receive only probabilistic 786 
information about the state of the environment. This means not only they themselves form 787 
uncertain beliefs but also can only estimate the other’s belief about the state of affairs. 788 
Additionally, in the advisor task, the advisor receives more veridical information than the 789 
advisee, creating divergent belief states between advisor and advisee. In the tiger task beliefs 790 
diverge when players perform different actions and one player receives more information 791 
than the other. As in the false belief task, divergent beliefs in advisor and tiger task create an 792 
incentive to represent the other’s knowledge state. However, the false belief task is purely 793 
observational. In contrast, in the advisor task advisees react, and in the tiger task players fully 794 
interact. Further, advisor’s cues in the advisor task add additional uncertainty and the advisee 795 
needs to infer the advisor’s intent and trustworthiness. Advisees need to integrate both their 796 
prediction about the advisor’s trustworthiness and truthfulness in giving advice on a given 797 
trial, which in turn results from their representation of the advisor’s intentions, together with 798 
their own beliefs about the lottery. In contradistinction, incentives are clearly set in the tiger 799 
game. However, individuals may differ with respect to riskiness. Players need to estimate and 800 
react to their co-players’ individual levels of risk-seeking behavior and integrate that into the 801 
rest of the task components. These task properties likely trigger complex social reasoning 802 
processes including a representation of the other person’s dynamically changing beliefs and 803 
their motivations. Players have to integrate their estimate of the co-player’s learning, 804 
valuation and decision process with their own. Additionally, they need to consider how they 805 
themselves are represented by the other. Hence, one’s own reference frame and that of the 806 
other are recursively interweaved. By combining environmental uncertainty and unequal 807 
distribution of information about the environment these tasks promote and therefore allow 808 
careful computational analysis of the attribution of dynamic belief states. Uncertainty about 809 
others’ intent and risk aversion requires additional inference about motivational states. 810 
Finally, incorporating interactive settings creates opportunities to examine the dynamic 811 
attribution of trial-by-trial changes in others’ intentional states, the prediction of behavior in 812 
light of these states, active choice with respect to one’s own knowledge and motivations, and 813 
reflections about one’s own reference frame from others’ perspectives.  814 
  815 
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816 
Figure 4| Localizing tasks and models with respect to our 2-dimensional classification space 817 
We characterize tasks and models with respect to two dimensions: interactivity and uncertainty.  818 
(A) Uncertainty with respect to tasks is further split into social and environmental uncertainty. Social 819 
uncertainty refers to ambiguity about others' internal variables such as their individual preferences or level of 820 
cognitive sophistication, and their beliefs, values and motivations. Environmental uncertainty indicates that 821 
participants and observed agents are faced with a noisy and only partially predictable surrounding context and 822 
need to infer its current state on each trial. Note, that the false belief task includes neither social nor 823 
environmental uncertainty. However, this and other tasks include divergent belief states. This component is not 824 
captured in this figure.   Interactivity is graded as follows: (1) mere observation of others actions without 825 
predicting or reacting to them but using the information their actions reveal about the environment, (2) reacting 826 
to others’ choices by integrating them into one’s own decision process but without taking others’ perspectives, 827 
(3) predicting others’ behavior from their frames of reference, and finally (4) predicting others by taking their 828 
perspectives while at the same time integrating this into one’s own frame of reference to react to and influence 829 
others’ behavior. 830 
(B) Uncertainty with respect to models denotes whether they include parameters that model agents’ learning 831 
about environmental and social uncertainty or include no learning. Interactivity indicates how well models 832 
parameterize representations of other agents. This ranges from (1) single agent models with no explicit 833 
representation of the other but integrating information derived from others’ actions, (2) sub-intentional or (3) 834 
intentional representations of others to predict future choices and optimization of own actions with respect to 835 
these predictions, to (4) sub-intentional and (5) intentional recursive models where predictions of others include 836 
predicted responses to one’s own actions and optimization of one’s own behavior to these nested predictions.    837 
  838 
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3. Models  839 
 840 
To specify the hidden cognitive processes underlying overt behavior cognitive neuroscience 841 
leverages quantitative computational models that are fit to the participants’ behavioral 842 
responses. From these models, latent variables capturing the significant computations are 843 
extracted and combined with neural data in model-based analyses approaches. Model-based 844 
analyses in cognitive neuroscience examine how particular cognitive operations are carried 845 
out at the neural level (Gläscher & O’Doherty, 2010). We review a number of computational 846 
models that have been used to elucidate social decision-making processes. As was the case 847 
when characterizing experimental approaches, we will use the dimensions of interactivity and 848 
uncertainty to characterize models. Interactivity in the context of formal models denotes the 849 
extent to which agential models capture the other agent’s reasoning. Interactivity in models is 850 
subdivided into two additional sub-dimensions: (1) intentionality, or models that include an 851 
intentional model of others in contrast to models that include only the effects of others’ 852 
actions as regularities in the environment, and (2) recursivity, or models that capture 853 
processes such as “Agent A thinks that agent B thinks that A thinks that XYZ is the case”. 854 
Uncertainty in models refers to models’ capacities to represent the underlying but sometimes 855 
only partially accessible states and dynamics of the environment. 856 
 857 

3.1. Non-interactive models for decision making under uncertainty 858 
The formal social decision frameworks included here are based on single-agent reinforcement 859 
learning (RL) models. To simplify the understanding of subsequently presented social 860 
decision frameworks, we briefly summarize single agent models. RL problems are typically 861 
modeled by the Markov Decision Process (MDPs) (Puterman, 1990). An MDP is defined by 862 
set of states � = {��, … , ��, … , �	} representing the environment, a set of actions � =863 {��, … , ��, … , �	} an agent can take, a reward function determining the reward based on 864 
states and actions 
(����, ����, ��) , and a transition function � = �(��|����, ����) 865 
determining the environmental dynamics. The transition function captures the probabilities of 866 
transitioning between states given specified actions. Different decision strategies in the 867 
different states of the environment provide varying rewards to the agent. The goal in RL is to 868 
take those actions that maximize the long-term expected future rewards (Sutton and Barto, 869 
2012). This can be achieved via choice-heuristics and learning the value of chosen (and 870 
sometimes unchosen) actions without explicitly representing the structure of the environment. 871 
This occurs by mapping actions directly to rewards in so-called “model-free learning”. 872 
Alternatively, agents might develop “model-based learning” via a sophisticated 873 
representation of the environment, which means representing the transition probabilities 874 
between states, thereby allowing for flexible goal directed decision making. Evidence for 875 
both model-free and model-based learning has been found in humans and other organisms 876 
(Daw & Dayan, 2014; Daw, Niv, & Dayan, 2005; Gläscher, Daw, Dayan, & O’Doherty, 877 
2010; Wan Lee, Shimojo, & O’Doherty, 2014). 878 

3.1.1. Model-free single agent decision models 879 

Model-free learning and decision making can be captured by temporal difference (TD) 880 
learning (Sutton and Barto, 2012). In TD, an agent learns solely by experience without 881 
knowing and representing the dynamics of the environment. At each time step � the value 882 �(��) of taking a strategy in state �� ∈ �  of the environment is updated based on the obtained 883 
reward: 884 �(��) = �(��) + ������ + ��( ����) − �( ��)  
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with � being a learning rate that weights the influence of new observations, γ being the 885 
discount factor regulating the effect of future values. Although lacking an explicit 886 
representation of the surrounding dynamics, dynamic value updating provides a basic 887 
representation of environmental uncertainty.     888 

Basic model-free, single-agent RL algorithms can capture vicarious learning 889 
mechanisms elicited in observational learning scenarios in which individuals do not act 890 
themselves, but learn their own action values by observing the actions of others as well as the 891 
outcome of those actions (Burke, Tobler, Baddeley, & Schultz, 2010; Hill et al., 2016). More 892 
complex observational learning problems require extensions of classic single-agent RL 893 
models. To formalize indirect learning about the environment that occurs only by observing 894 
others whose preferences are known to the observer but whose action-outcomes are hidden 895 
(Figure 1E), Collette and colleagues (2017) used an inverse RL framework. Inverse RL 896 
distinguishes from classic RL in that instead of trying to find an optimal strategy with respect 897 
to a given reward function, it aims at inferring the reward function that best explains an 898 
agent’s behavior (Arora and Doshi, 2018; Ng and Russell, 2000). Collette et al. (2017) used 899 
inverse RL to capture how humans make sense of the world by observing other agents’ 900 
behavior. Their computational model recovered the underlying reward distribution that best 901 
explained the observed agents’ actions, thereby capturing participants’ learning about the 902 
environment only by observing behavior.  903 

3.1.2. Adapted model-free single-agent models 904 

A different adaptation of single-agent RL was found to best capture the tracking of others’ 905 
expertise (Boorman et al., 2013) (Figure 1D). Boorman and colleagues combined classic 906 
learning about the values of strategies with learning about the quality of others’ behavior (i.e., 907 
the correctness of others’ actions). Observed agents’ expertise was operationally defined as 908 
the probability of them making correct choices and was modeled in two sequential learning 909 
steps. First, the match between the observed agent’s choice and one’s own action-value 910 
estimate was assessed. Second, the expertise estimate was updated based on whether the 911 
observed action was or was not correct. The authors noted that the first updating step is 912 
suboptimal with respect to rational choice theory but was required to adequately model 913 
participants’ choices. This suggests that instead of representing other agents as performing at 914 
a constant rate throughout, participants represented the agents that they observed as learning 915 
about the value of assets in a way that was similar to their own learning. Interestingly, this 916 
suboptimal model best explained participants’ choices both when they received instructions 917 
that the “other” was a person or a computer. 918 

A third variation of single agent RL was presented in a recent attempt to model social 919 
influence of group decisions on individual decision by Zhang & Gläscher (2019). In a two-920 
phase group decision task, participants could adapt their own choice after the decisions of the 921 
other group members had been revealed (Figure 1C). Zhang & Gläscher developed a 922 
computational model that combines learning from one’s own experiences (via a classic RL 923 
approach) with learning from other players. They did this by computing a value based on the 924 
recent reward history of the others. These two value signals were weighted into a single 925 
choice value determining the first decision. The model then predicted switch or stay after the 926 
disclosure of group behavior by incorporating parameters for the difficulty of the first 927 
decision and for the coherence of the group’s decision.  928 

All three variations of model-free, single-agent RL presented above capture 929 
individuals’ learning about an uncertain environment when that learning is based on one’s 930 
own action-outcome associations and/or observing others’ behaviors in the world. In the 931 
inverse RL model by Collette et al. (2017) this is achieved by learning “through the eyes” of 932 
an observed agent. Although this inverse RL model does not include an interactive 933 
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component and no explicit representation of others, it does include an intentional model of 934 
the other’s decision-making processes. The observed agent’s learning is explicitly 935 
represented to infer the hidden aspects of the world. In contrast, neither the social influence 936 
model nor the expertise tracking model explicitly represents others’ learning or makes 937 
predictions about the choices of the agent being observed. These models represent others’ 938 
task capacities irrespective of the decision processes that lead up to their choices. So, while 939 
these models capture learning about an uncertain surrounding from the agent’s own 940 
perspective, they do not represent others’ decision-making processes.  941 

3.1.3. Model-based single agent models 942 

Model-based action planning relies on an explicit representation of the environmental 943 
dynamics captured by the transition function �. Representing these dynamics allows for 944 
flexible decision-making. However, planning an optimal path through a given environment 945 
requires a representation of the current state. This is complicated when agents cannot directly 946 
observe the current state but only receive incomplete information about it. Under these 947 
conditions, percepts are partial and/or information is ambiguous. Formally, decision making 948 
under state uncertainty is captured by Partially Observable Markov Decision Processes 949 
(POMDPs) (Kaelbling et al., 1998). In a POMDP, information about the state at any given 950 
time is defined as a set of observations " = {#�, … , #� , … , #	} an agent can make. Actions 951 
taken at a given time step �� and the state ���� resulting from those actions define 952 
observation probabilities $(#�|��, ����). To deal with state uncertainty an agent integrates 953 
observations to form a belief %� about the possible states of the environment. Agents’ beliefs 954 
then dynamically update given the agents’ observations and prior beliefs, using a Bayesian 955 
estimation function: 956 

%�(��) = &$(#�|��, ����) ' �(��|����, ����)%���(����)
()*+

, 
where 957 

& = 1Pr(#�|%���, ����) =  ' $(#�|��, ����)
()

' �(��|����, ����)%���(����)
()*+

 

is a normalizing constant.  958 
To capture the core features of ToM, which are representations of others’ belief and 959 

motivational states, Baker et al. (2017) used an extended POMDP model (“Bayesian ToM 960 
model”). This model computes a joint posterior probability representing an observer’s beliefs 961 
about an observed agent’s possible beliefs. The overall likelihood is factorized into a model 962 
for the observed agent’s beliefs and a model of the agent’s planning process based on beliefs 963 
and desires. The Bayesian ToM model formalizes detached non-interactive representations of 964 
an individual’s intentional representation. These include another person’s beliefs about an 965 
uncertain environment based on the observed agent’s imperfect perceptual capabilities, along 966 
with the agent’s subjective preferences inferred from observed behavior. Thereby the model 967 
captures intentional decision making from another individual’s perspective. However, it does 968 
not formalize how this process is integrated with one’s own beliefs and desires and the 969 
choices that one makes as a result of these beliefs and desires. 970 

Both, model-free and model-based single-agent RL frameworks capture 971 
environmental uncertainty. Additionally, extensions of these models use inverse RL and the 972 
Bayesian ToM model to formally represent others’ intentional learning processes from a 973 
detached observational perspective. Active engagement and interaction are not formal 974 
features of these models.           975 

 976 
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3.2. Interactive decision models without environmental uncertainty  977 

3.2.1. Recursive models 978 

When multiple agents engage in interactions where their joint actions are relevant to one 979 
another, such that their individual rewards depend on others’ behavior, reasoning can become 980 
recursive in the form of “I think, that you think, that I think, ... .” and so on. Formally, this 981 
sort of thinking is captured by what is called a “level-k framework” (Stahl, 1993) and 982 
cognitive hierarchy theory (Camerer et al., 2004). The depth of reasoning an agent engages in 983 
is referred to as its level with the parameter k determining the sophistication or depth of 984 
reasoning. The concept is well illustrated by the beauty contest game described before 985 
(Figure 2A). Level-k frameworks are defined in a bottom-up fashion starting with a base 986 
level 0 agent model. A level-0 agent does not reason about others. It might completely 987 
discard any information about the other’s behavior and treat it as environmental noise, or 988 
assume the co-player is acting according to a hidden distribution (Coricelli & Nagel, 2009; 989 
Devaine et al., 2014; Gmytrasiewicz & Doshi, 2005; Yoshida et al., 2008). A level-k agent 990 
represents the other agent at level k-1. That is, a level-1 agent A1 represents the other agent 991 
A2 at level-0 (i.e. as having no ToM). A level-2 agent A1 represents the other agent A2 as a 992 
level-1 agent. This means that from the perspective of A1, A2 represents A1 as a level 0 993 
agent. This illustrates that by definition, k-level models represent other agents as ill-informed 994 
about the ToM level of the primary agent. The recursion in k-level frameworks theoretically 995 
extends ad infinitum, but typically most human choices do not require modelling agents 996 
beyond level 3 (Camerer et al., 2015). The specifics of level-0 models and consequently all 997 
higher-level definitions are determined by the decision problem and the underlying basic 998 
decision model.  999 

The advance of level-k frameworks over other models reviewed before is the 1000 
capability to formally model agents’ representations of others as interactive agents 1001 
themselves, i.e., as agents that respond to others’ behavior and that have representations of 1002 
one’s own ToM. This allows capturing real interactivity and interwoven information 1003 
processes as “model within a model”. Second, specifying different “base models” as level-0 1004 
models allows the capture of a variety of social reasoning processes; from representing 1005 
others’ as following simple sub-intentional strategies to representing others as fully 1006 
intentional, goal directed agents. Here, we provide an overview over the most prominent of 1007 
these models and we highlight their properties with respect to our two defining dimensions 1008 
and elucidate their implications for ToM research. 1009 

3.2.2. Level 1 and level 2 models 1010 

Although not actually considered a level-k model, fictitious play is a basic framework for 1011 
interactive decision making (Brown, 1951). In a fictitious play model, an agent observes the 1012 
history of a co-player’s actions and forms expectations about the co-player’s future actions 1013 
based on the frequency of past choice. In essence, the agent tracks the most frequently 1014 
selected action in the past. With respect to these predictions the agent then chooses the action 1015 
maximizing its own rewards. The choice history is dynamically tracked via a simple updating 1016 
rule essentially counting the co-player’s frequency of taking any of the available actions. 1017 
Fictitious play represents co-players’ behaviors via a very basic choice heuristic (namely, 1018 
“what the other has frequently chosen previously, will likely be his choice in the future”) and 1019 
represents others as sub-intentional level-0 agents. Moving up one step in the reasoning 1020 
hierarchy, Hampton et al. (2008) introduced an influence model. Instead of directly 1021 
predicting an opponent’s behavior from the choice history, the model computes the influence 1022 
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that one’s own behavior has on the opponent, assuming that the opponent uses fictitious play. 1023 
The agent then optimizes its own choices with respect to this prediction.  1024 

Capturing interactive behavior in a public goods game (Figure 2B) Khalvati et al. 1025 
(2019) utilized a level-1 sub-intentional social influence variant of the POMDP framework. 1026 
In their version of the task, all other players in the group were displayed as identical avatars, 1027 
thus rendering the social interaction anonymous (i.e., the identities of the other individual 1028 
players could not be inferred). As a consequence, a computational model for the task is best 1029 
when it models only the mean contribution probability of the entire group and not the 1030 
individual tendency of each member of the group to contribute to the public good. In their 1031 
implementation of a POMDP model applied to the public goods task, Khalvati and colleagues 1032 
used a beta distribution that is updated on every trial to represent the participant’s belief 1033 
about the overall group contribution to the public good. Effectively, the model represents 1034 
each individual player as a level-0 agent that chooses to contribute with the probability 1035 
defined by the belief distribution. This belief is updated over time using a Bayesian learning 1036 
rule and participants’ observations, capturing participants’ learning about the groups’ 1037 
behavior. The decision processes that influence whether the group members contribute or 1038 
free-ride, as well as any effects of one’s own choices on those decision processes, are 1039 
neglected. The resulting model does not incorporate ToM because it represents the individual 1040 
group members as sub-intentional decision makers whose actions are captured by simple 1041 
action probabilities.    1042 

 1043 

3.2.3. Fully recursive modeling 1044 

A full level-k framework for strategic decisions was introduced by Devaine and colleagues 1045 
(Devaine et al., 2014) to investigate different decision strategies when playing against a 1046 
supposedly human opponent vs. a random computer agent in a simple matching pennies task. 1047 
In their model, level-0 opponents’ choice probabilities �0  are assumed to follow a time-1048 
varying hidden distribution 1�. Observing actions provides information about the mean 2�3 of 1049 
the underlying distribution. Similar to a prediction error, 2�3 is updated at each time point with 1050 
the difference in observed and expected action: 1051 

2�3 =  2���3 + '(�0� − �(2���3 ))
�

 

with �  denoting a sigmoid choice function. The opponent’s decision probability �0���(�) is 1052 
then computed with a sigmoid decision function based on 2�3 and an unknown volatility 43 1053 
and choice temperature &3. Based on this action probability for the opponent, the level-0 1054 
agent chooses its own action such that it maximizes the individual expected value. In a 1055 
recursive fashion, predictions about the opponents’ choices for a level-1 agent and higher are 1056 
built up from this level-0 decision rule. The agential model needs to select both the hidden 1057 
variables governing action probabilities and the sophistication (k-level) of the agent’s 1058 
opponent. This results in a posterior distribution over the opponent’s k-levels and the action 1059 
probability variables. These estimates in a fully recursive framework allow examining how 1060 
participants represent others’ cognitive abilities and their beliefs about how they are 1061 
themselves represented by others. 1062 

Irrespective of sophistication, all models considered in this section are based on sub-1063 
intentional level-0 models. That means that at the lowest level, others are not represented as 1064 
agents with desires, beliefs or intents but as agents whose actions follow simple hidden 1065 
distributions. Thereby, at the lowest level these models capture others’ actions as non-1066 
intentionally rooted information that is integrated into one’s own decision processes. 1067 
However, the level-k framework by Devaine et al. (2014) and Hampton et al.’s influence 1068 
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model (2008) include higher-level representations. These comprise intentional 1069 
representations of others, although they are still based on a sub-intentional level-0 model. 1070 
Further, neither basic fictitious play, the influence model, nor the full level-k reasoning model 1071 
include a representation of the environment. Therefore, they are only applicable to static 1072 
strategic games taking place in a stable environment such as matching pennies or the 1073 
inspection game (Figure 2C) (Camerer, 2003; Devaine et al., 2014; Hampton et al., 2008).  1074 

Yoshida and colleagues (2008) capture strategic decision making in the spatial stag-1075 
hunt game (Figure 2F). The spatial variation of this simple coordination game requires long 1076 
term action planning with respect to the (fully observable) surrounding and the co-player’s 1077 
future actions. To integrate both agents’ acting in the environment they extend a basic MDP 1078 
model by defining the state space as the product of both agents’ admissible states. 1079 
Consequently, rewards are also defined on the joint state space and the other’s actions are a 1080 
function solely of the other’s private value function. Based on the interacting agents’ 1081 
estimates of their respective goals, the models predict cooperative, coordinated or 1082 
individualized behavior. In the next step, optimal strategies with different levels of recursion 1083 
were computed in the extended multi-agent MDP framework. The resulting k-level MDP 1084 
model can capture model-based goal directed agents recursively integrating other intentional 1085 
agents’ behavior into their decision process. However, the underlying MDP is fixed and 1086 
environmental properties are not dynamically learned by the agents. Hence, the k-level MDP 1087 
represents no learning about the environment.   1088 
 1089 

3.3. Interactive models for decision making under uncertainty 1090 
In this final model characterization, we introduce two computational frameworks that extend 1091 
reinforcement learning to the multi-agent domain, allowing us to formalize interactive social 1092 
decision making under social and environmental uncertainty. Although both models can be 1093 
applied to larger multi-agent scenarios, for the sake of simplicity and comprehensibility we 1094 
only describe a two-agent implementation.  1095 

3.3.1. Non-hierarchical modeling 1096 

Experience weighted attraction (EWA) (Camerer & Ho, 1999) combines simple model-free 1097 
RL and belief-based learning in a continuously weighted fashion. Simple RL estimates the 1098 
values of one’s own actions given the current rewards and updates these value representations 1099 
via an experienced-based reward prediction error. It does not explicitly take the actions of the 1100 
other players into account. Belief-based learning (essentially fictitious play) estimates the 1101 
probability distributions by which the other agent chooses its actions, and then adapts the 1102 
chosen action accordingly. These two individual forms of learning are implemented in EWA 1103 
by specific parameter settings (Camerer & Ho, 1999). However, the power of EWA lies in 1104 
the continuous weighting of these two forms of learning by a trade-off parameter 5 (see 1105 
below). Thereby, EWA combines a representation of the environment, which is learning the 1106 
value of own actions given the current state of affairs, with a simple (i.e., sub-intentional) 1107 
model of others’ actions. The value of all available actions is updated according to a learning 1108 
rule that combines several variables. The first variable 6(�) is equivalent to previous (pre-1109 
measurement) experience and updated according to the following rule: 1110 6(�) = 76(� − 1) + 1. 
The parameter 7  is a depreciation term that reflects how fast new reward associations can 1111 
override prior experience. EWA updates the value of all available actions, but the update 1112 
distinguishes between the chosen (�9� = �9(�)) and the non-chosen actions (�9� ≠ �9(�)), 1113 
while holding the action of the other player (�0; (�)) constant. 1114 
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Thus, in case of the actual action (�9� = �9(�)  ), the value of that action is updated with the 1115 
full joint reward A(�9(�), �0(�)) whereas the unchosen joint action �9� ≠ �9(�) is updated 1116 
with the delta-weighted joint reward 5 ∗ A(�9(�), �0(�)).  It is one of the key insights of 1117 
EWA (detailed in Camerer & Ho, 1999) that this weighted updating of unchosen action 1118 
approximates belief-based learning. EWA has been successfully used in several behavioral 1119 
economics experiments (see Camerer et al., 2004) and in a decision neuroscience context for 1120 
modeling choice behavior in patent race games (Zhu et al., 2019, 2011). However, it is a 1121 
computational model that provides only a very basic, sub-intentional, non-recursive 1122 
representation of others.   1123 

3.3.2. Fully recursive modeling 1124 

A combination of model-based RL and intentional recursive representations of others’ 1125 
decision processes is given by the Interactive Partially Observable Markov Decision 1126 
Processes (I-POMDPs) (Gmytrasiewicz and Doshi, 2005). Recall that an (individual) 1127 
POMDP agent xF  forms beliefs %9� (��) about the physical states of the environment allowing 1128 
it to plan actions in an uncertain, only partially accessible surrounding. I-POMDPs extend 1129 
single-agent POMDPs to the interactive domain by combining the physical state space �GH0( 1130 
with intentional models of the other agent I (Θ0) yielding an interactive state space K�9 =1131 �GH0( × M0. Consequently, an I-POMDP agent’s beliefs are no longer over � but over  IS: 1132 bQR (isR). The key component of the model M0 which agent 1  forms about the second agent I  1133 
is that it includes I’s beliefs bUR . That means agent 1’s belief %9� (B��) is a probability 1134 
distribution over the multidimensional space spanned by physical states and beliefs of I and 1135 
hence captures x’s belief about the state of the physical environment and I’s belief. These 1136 
aspects of the model are then the agent’s knowledge about the world and its knowledge about 1137 
another individual’s intentional states. Agent I’s beliefs are either over the physical states 1138 
space %0� (�) (essentially equal to a single agent POMDP) or these beliefs themselves can be 1139 
over an interactive state space including models of 1 (K�0 = �GH0( × M9). The first case, in 1140 
which agent I forms beliefs over physical states only, results in a level-1 model for agent 1. 1141 
Agent 1 represents agent I as an intentional goal-directed level-0 agent that acts to maximize 1142 
its reward in the world but does not represent or react to other agents in the surrounding. In 1143 
the latter case, in which agent I forms beliefs about 1’s beliefs, agent 1 represents I as 1144 
reasoning about himself. That results in a level-2 model for agent 1. Theoretically, as 1145 
discussed before, this recursion could go on and beliefs could be nested infinitely yielding 1146 
higher-level agent 1 models. However, as for simpler level-k frameworks, it is reasonable to 1147 
assume bounded rationality. Dynamic belief updating in the I-POMDP framework follows 1148 
the same basic Bayesian learning rule as the POMDP update, however it is extended to 1149 
include an update of the other’s belief (for details see Gmytrasiewicz & Doshi, 2005). This 1150 
requires solving models of I in bottom-up manner, essentially simulating I’s learning and 1151 
decision process. Environmental uncertainty and uncertainty regarding the other’s model of 1152 
oneself hamper this process and make model parametrization and selection challenging.  1153 

The I-POMDP framework has been used to model behavior and reasoning processes 1154 
in a multi-round trust task (Figure 2G) (Hula et al., 2018, 2015) and the centipede game 1155 
(Figure 2I) (Doshi, Qu, Goodie, & Young, 2012, Doshi, Qu, & Goodie, 2014). In its 1156 
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application to the trust task, the I-POMDP allowed formalizing players’ risk aversion and 1157 
guilt as well as the recursive representations of the co-player’s risk and guilt parameters. 1158 
These parameters define the rate of cooperation and the breakdown and reestablishment of 1159 
cooperation between players over the course of multiple interactions (Hula et al., 2018). 1160 
Using I-POMDP models to capture decision processes in a centipede game showed that 1161 
participants mostly adopt decision strategies of level-1 or level-2 and that the depth of 1162 
recursive reasoning increases in more competitive scenarios (Doshi et al., 2012).  1163 

While EWA formalizes an agent’s own knowledge state it cannot model others’ 1164 
beliefs. Co-player’s actions are included by tracking the frequency of forgone choices. 1165 
Thereby, the framework fails to capture the intentional representations of others’ knowledge 1166 
states and resulting decision processes. This is different from the approach taken by the I-1167 
POMDP framework. By recursively meshing POMDP models, I-POMDP models formalize 1168 
high level ToM processes. Others are represented as intentional goal-directed agents whose 1169 
beliefs are dynamically updated as information about the environment unfolds. Further, via 1170 
recursion, others’ intentional representations of one’s own beliefs, values and motivations can 1171 
be formalized and so quantitatively represented. The I-POMDP framework is very well suited 1172 
to model complex ToM processes in a range of applications.      1173 

 1174 
 1175 

4. Neural responses 1176 
 1177 
In previous sections we addressed the primary focus of the typological proposal in this paper, 1178 
which draws on a detailed description of social decision-making tasks and their 1179 
computational models. We were able to do so, because of the wealth and amount of 1180 
behavioral studies that have used these tasks and that have analyzed the data using 1181 
computational models we summarized. The aim of this section is to characterize how the 1182 
elicitation of neural responses may correspond to our typology involving uncertainty and 1183 
interactivity in cognitive tasks investigating ToM. Therefore, our focus is different from those 1184 
of previous reviews (Amodio & Frith, 2006; Frith & Frith, 2006; Mitchell, 2009; Saxe, 2006) 1185 
and meta-analyses (Schurz et al., 2014; Van Overwalle and Baetens, 2009), which parcellated 1186 
the available studies based on different ToM tasks (e.g. false belief tasks, trait judgments, 1187 
social animations, the mind in the eye task, strategic games). However, only few 1188 
neuroimaging studies can be described in terms of interactivity and uncertainty, and even 1189 
fewer have used model-based fMRI analyses (Gläscher & O’Doherty, 2010), which 1190 
represents the current state-of-the-art for relating computational models as described above 1191 
directly to neuroimaging data. In addition, previous work has presented analyses of the 1192 
neuroimaging data (e.g. the specific model-based contrasts) that does not necessarily address 1193 
the dimensions of interactivity and uncertainty that define the typology of this review. 1194 
Therefore, in this section we describe the neural responses in terms of (a) representing others’ 1195 
beliefs and intentions, and (b) recursive ToM. 1196 

Although early neuroimaging studies have employed famous interactive decision-1197 
making tasks like the prisoner’s dilemma and the trust game, the analyses have generally 1198 
focused on the comparison of cooperative vs. competitive behavior (Rilling et al., 2002), the 1199 
faces of cooperative vs. competitive opponents (Singer et al., 2004), the reputation to 1200 
cooperate (Phan et al., 2010), or simply on good vs. bad outcomes (Delgado et al., 2005). 1201 
Common to these findings is a robust activation of the striatum (ventral and dorsal striatum, 1202 
putamen, and caudate head) and vmPFC (Li et al., 2009) when contrasting cooperative with 1203 
competitive behavior by the other player. This resonates with many (single-agent) reward 1204 
learning studies that report reward-related activation in this region (Bartra et al., 2013), 1205 
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including reward prediction errors (RPEs) (Garrison et al., 2013) suggesting that pro-social 1206 
interactions may act as a social reward. 1207 

A substantial number of neuroimaging studies that have used false belief tasks to 1208 
investigate the representation of others’ beliefs have reported activations in bilateral TPJ, 1209 
mPFC, and precuneus (see Schurz, 2014 for a meta-analysis). Several neuroimaging studies 1210 
have also investigated representations of others with model-based approaches. A common 1211 
finding among these studies is the involvement of the medial and dorsomedial prefrontal 1212 
cortex in these representations, similar to reports from earlier reviews and meta-analyses. For 1213 
instance, Behrens et al. (2008) using the original advisor task reported a social prediction 1214 
error in the dmPFC and rTPJ/pSTS, whereas an RPE correlated with BOLD activity in the 1215 
ventral striatum, consistent with the findings mentioned. Moreover, Collette et al. (2017) 1216 
reported an activation of mPFC correlating with simulated values of an observed player. In 1217 
that study, rTPJ was associated with a belief entropy signal which was related to the 1218 
uncertainty of current beliefs. In contrast, in the spatial stag hunt game (Yoshida et al., 2010) 1219 
mPFC activity correlated with a belief entropy signal, coding the uncertainty about the beliefs 1220 
of the other player. Similarly, mPFC also correlated with the belief estimates of the observed 1221 
person’s ability in the expertise learning task (Boorman et al., 2013), whereas rTPJ was 1222 
linked to a belief updating signal. In a similar vein, mPFC was associated with the difference 1223 
in log-likelihood between the influence model and a simple fictitious play model in the 1224 
inspection game (Hampton et al., 2008), suggesting that it was related to level-2 beliefs about 1225 
influences of the opponent’s choice. Zhang & Gläscher (2019) reported that activity in 1226 
bilateral TPJ/pSTS correlated with the number of other players with opposing decisions. In 1227 
that report, vmPFC was related to the expected value learned from one’s own experience 1228 
compared to the value learned from the other players’ recent reward history. Despite the 1229 
differences in these tasks and where they fall on our interactivity dimension (see Figure 4A), 1230 
the commonality of these neuroimaging findings suggests that bilateral vmPFC and dmPFC 1231 
are often recruited during the representation another person’s beliefs and abilities. The 1232 
computational role of the TPJ - though clearly and robustly involved in many social decision-1233 
making paradigms - remains elusive. This suggests that the information processing 1234 
contributions of this region are multi-purpose and that networks within the region can be 1235 
recruited to perform different computations in different experimental contexts. 1236 

Another region that is often related to representing aspects of a social partner and 1237 
interactions with them is the anterior cingulate cortex (ACC). For instance, in comparing the 1238 
trust game with a control game, the ACC is related to trust decisions (Krueger et al., 2007), 1239 
whereas the septal area and the ventral tegmental area are more specifically related to 1240 
building and maintaining trust. During a vicarious RL task involving students who learn and 1241 
an all-knowing teacher (Apps and Ramnani, 2014), the activity in the ACC reflects prediction 1242 
errors signals for the teacher’s simulated values of the students’ value estimate. Similarly, in 1243 
the expertise tracking task the ACC was involved in computing a belief updating signal in the 1244 
form of an “ability prediction error”. Moreover, Zhu et al. (2011) reported belief prediction 1245 
errors about the opponent’s actions in the rostral (perigenual) part of the ACC. In the original 1246 
volatility learning task (Behrens et al., 2007) as well as in its social variant, the advisor task 1247 
(Behrens, Hunt, Woolrich, & Rushworth, 2008), the ACC correlates with a model-derived 1248 
volatility signal of the environment or of the social partner. This volatility signal in turn 1249 
influences the first-order learning rates that update reward expectations. In the social 1250 
influence task by Zhang & Gläscher (2019), the ACC represents the value signal computed 1251 
from other players’ recent reward histories. In summary, similar to the rTPJ, the networks in 1252 
the ACC often, but not exclusively, show activation patterns that covary with error signals 1253 
that index violations of expectations about the environment or of social partners. This pattern 1254 
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of error-related activation in the ACC is consistent with its well-documented role in error 1255 
monitoring (Holroyd and Coles, 2002). 1256 

Few studies have directly investigated recursive ToM and the different levels of 1257 
sophistication that make up the highest level in our typology of social decision-making tasks. 1258 
Bhatt and Camerer (2005) used a series of matrix games that are “dominance-solvable” 1259 
meaning that through iterated reasoning, non-optimal strategies can be eliminated as one 1260 
identifies the equilibrium strategy. During the experiments they asked the participants to 1261 
simply make their own choice (level-0), estimate what the other player is going to choose 1262 
(level-1 beliefs), and guess what the other player thinks they will choose (level-2 beliefs). 1263 
They identified the left anterior insula and the right inferior frontal gyrus when contrasting 1264 
BOLD responses from games with level-2 vs. level-1 questions. In contrast, rACC, posterior 1265 
cingulate cortex (PCC), and dlPFC showed stronger BOLD responses when making choices 1266 
compared to level-1 beliefs.  1267 

Employing model-based fMRI analysis, Yoshida (2010) used the spatial stag hunt 1268 
game and their previously developed computational model (Yoshida, 2008), to identify 1269 
neural correlates of belief uncertainty (entropy) about the computer agent’s strategies. In that 1270 
analysis, the trial-by-trial estimate of the agent’s sophistication level correlated with 1271 
activation in the superior parietal lobule, the frontal eye fields, and the dlPFC (albeit in much 1272 
more dorsal than reported in the Bhatt & Camerer study). 1273 

While in the stag hunt game estimating the level of reasoning is done by comparing 1274 
model predictions at different levels of reasoning, the beauty contest game offers a more 1275 
direct estimation. The choices made by the participants directly reflect how far participants 1276 
iterated their own strategy with those of the entire group. Coricelli and Nagel (2009) used a 1277 
version of this game adapted to the fMRI environment and instructed participants to make 1278 
choices. Participants played against human opponents or against a computer simulation of 1279 
group decisions. Using the cognitive hierarchy model (Camerer et al., 2004) to analyze the 1280 
behavioral data, they observed that most participants showed levels of ToM between level-1 1281 
and level-3. Based on the distance between the data and model predictions, they classified 1282 
participants into high and low levels of reasoning. These subgroups exhibited activations in 1283 
the rACC for low, and in the vmPFC and mPFC for high level reasoning. 1284 

In the previous two studies, the participants’ choices revealed their reasoning level in 1285 
response to partner or group decisions. However, the modeling in these studies did not take 1286 
the influence that the participant might exert on the other players into account. The inspection 1287 
game (Hampton et al., 2008; Hill et al., 2017) addresses this aspect of interactive reasoning. 1288 
Although the modeling does not explicitly refer to the level of reasoning, the authors contrast 1289 
different computational models (Reinforcement Learning, Fictitious Play, Influence Model) 1290 
that correspond to different levels of recursivity in ToM. In particular, the Influence Model 1291 
captures the influence that the participants exert on their opponents thus elevating the 1292 
reasoning process to level-2. Expected value signals derived from the influence model 1293 
correlated with brain activity in vmPFC more strongly than those derived from other, less 1294 
sophisticated models. Belief updating signals from the influence model also correlated with 1295 
activation of the rTPJ. The conviction that one was influencing one’s opponent, measured as 1296 
the difference in the log-likelihood of the influence and fictitious play models, showed a 1297 
robust activation of mPFC. 1298 

Lesion-Deficit Analyses (LDA) have also attempted to segregate the high-level, 1299 
inference-based ToM network, which includes the regions already discussed above, from 1300 
lower-level, perception-based networks. The latter are sometimes called simulation networks 1301 
and include the anterior intraparietal sulcus (aIPS) and premotor cortex (PMC) (Van 1302 
Overwalle and Baetens, 2009). In a group of patients with a rare form of glioma that migrates 1303 
along large associative fiber tracts, Herbet et al. (2014) were able to link impairment in high-1304 
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level ToM to surgical disruptions of the arcuate fasciculus, whereas lower-level ToM was 1305 
associated with disruptions of the cingulum. This emphasizes that the functional ToM 1306 
network is built on structural connectivity and can be disrupted by severing significant white 1307 
matter connections. These results for high-level mentalizing were later confirmed in 1308 
additional glioma patients, which also highlighted the superior longitudinal fasciculus and the 1309 
fronto-striatal tract, whereas lower-level and face-based mentalizing was also associated with 1310 
the OFC and the uncinate fasciculus (Nakajima et al., 2018a, 2018b). Furthermore, a recent 1311 
functional connectivity study (Fishman et al., 2014) found that in contrast to commonly held 1312 
beliefs, persons with AS compared to NT controls exhibit increased and not decreased 1313 
connectivity between the mentalizing and the simulation networks, giving rise to the 1314 
intriguing hypothesis that persons with AS may suffer from overconnectivity and – as a result 1315 
– a diminished functional segregation between these two networks. However, this finding 1316 
could only be demonstrated in 15 tightly matched pairs of participants and thus it awaits 1317 
replication in a large sample. 1318 

In conclusion, while a robust ToM network including of TPJ, mPFC/rACC, precuneus, 1319 
and vmPFC, and sometimes also the dorsal ACC, is consistently recruited in various different 1320 
ToM tasks, the specific roles of each of these network nodes remains multidimensional and 1321 
requires further specification. Others have attempted to parse the heterogeneity of findings in 1322 
the mentalizing network in terms of self-referencing and other-referencing information 1323 
processing (Joiner et al., 2017). However, they also conclude that different computational 1324 
signals appear to be represented in the same brain regions for different tasks. The evidence 1325 
from the few model-based fMRI studies reviewed here also suggests a dynamic recruitment 1326 
of these areas when accomplishing related, but distinct, tasks that involve different degrees of 1327 
interactivity and uncertainty. The array of different tasks and the lack of attention to how 1328 
these tasks differ has likely contributed to the heterogeneity of interpretations thus far and has 1329 
contributed to lack of clarity regarding the computational roles of the nodes in the ToM 1330 
network. It is our hope that with additional model-based neuroimaging studies in this field, 1331 
possibly designed along our axes of interactivity and uncertainty, a more precise 1332 
characterization of the computations will emerge. 1333 
 1334 
 1335 
5. Conclusion 1336 
 1337 
When aiming at examining human ToM capacities, several important aspects need to be 1338 
considered. First, one should be aware that Theory of Mind is a highly inclusive concept that 1339 
implies a variety of cognitive sub-functions including emotional processes, motivational and 1340 
goal-oriented valuational processes, and functions associated with belief and knowledge 1341 
(Schaafsma et al., 2015). Furthermore, as shown in the first section of this review, even 1342 
within one “subsection” of these functions the cognitive processes that are likely elicited 1343 
differ strongly depending on the specifics of the social situation. We argued that the two 1344 
dimensions of uncertainty and interactivity can provide an effective typology of tasks for 1345 
understanding the potential for eliciting the varying levels of ToM in social decision making. 1346 
First, we proposed that uneven distribution of information about the environment among 1347 
agents and increased uncertainty about the environment likely elicits representations of 1348 
others’ belief states. Second, we suggested that uncertainty about others’ motivational traits 1349 
and dynamically changing states creates an increased functional relevance for representing 1350 
others’ motivational traits and states. Finally, we propose that behavioral relevance and the 1351 
interdependence of individuals’ actions determines the frame of reference. In tasks that do not 1352 
directly link one’s own successful outcome to one’s representation of others’ beliefs and 1353 
motivations, the outcomes of others’ choices can be used as an additional source of 1354 
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information to guide one’s own actions. However, in such task situations there is little to no 1355 
incentive to engage in representing the intentionality of those others. Hence, integration of 1356 
this information into individuals’ own frame of reference without taking the others’ 1357 
perspective is sufficient. Predictions under asymmetric belief states and uncertainty, however, 1358 
require taking the others’ intentional perspectives into account via some level of 1359 
representation. Lastly, we suggested that true action-interdependence under uncertainty 1360 
requires the integration of one's own and others’ intentional perspectives and decision 1361 
processes, best allowing for scientific inquiry into high level ToM. Consequently, tasks 1362 
aimed at investigating ToM processes in their full richness should be designed with both of 1363 
these dimensions in mind. Further, for a more complete and ecological validity picture of 1364 
ToM processes, tasks should explore rich environments and face-to-face interactions. 1365 

In the second section of this review we characterized formal computational 1366 
frameworks and identified models’ varying capacities to map uncertainty and to integrate 1367 
multiple agents’ beliefs, motivations and decision processes. Computational models provide 1368 
quantitative testable descriptions of hidden cognitive functions and their putative parameters. 1369 
Applying models that capture uncertainty and interactivity might allow us to disentangle the 1370 
multitude of sub-processes of ToM. We argued that different tasks elicit different grades of 1371 
ToM. Validating these claims requires testing a variety of social decision models on these 1372 
tasks to objectively characterize if representations of others differ in the various scenarios. 1373 
Thereby, we might gain a more complete and structured understanding of the cognitive 1374 
processes underlying social decisions and would be able to examine the interplay of 1375 
underlying neural systems in more detail.  1376 

Here we focused on the importance of interactivity with respect to the interaction of 1377 
one’s own and others’ referential cognitive processes. We note that a call for strong 1378 
interactivity has previously been made by proponents of “second-person neuroscience”. 1379 
Advocates of this view argue that cognition during interaction differs fundamentally from 1380 
observational scenarios. They argue that not only is recursive thinking elicited only during 1381 
interaction, but they also stress qualitative components like the feeling of engagement with or 1382 
connection to others that come into play during interaction (Redcay and Schilbach, 2019; 1383 
Schilbach et al., 2013). Further, they emphasize the importance of “multi-brain” or 1384 
“hyperscanning” studies during which the neural activity of multiple interacting agents is 1385 
recorded. Hyperscanning recordings have successfully been conducted using fMRI and EEG 1386 
and have revealed specific synchronizations between the neural activity of interacting 1387 
partners during abstract communication and motion matching tasks (Dumas et al., 2010; 1388 
Stolk et al., 2015).  1389 

In line with these views, we argue for investigating ToM in rich interactive contexts 1390 
under environmental and social uncertainty, while simultaneously recording neural activity 1391 
from all interacting individuals. Such designs will provide measures that enable the discovery 1392 
and parameter estimation of accurate models of the neural coding of ToM in its full 1393 
complexity. 1394 
 1395 
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Highlights  
• The ability to form a Theory of Mind (ToM) constitutes a hallmark of human cognition. 
• We review various decision tasks and computational models aimed at ToM. 
• Tasks and models are characterized with respect to interactivity & uncertainty.  
• We suggest that the complexity of ToM varies along these two primary dimensions. 


