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Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs
in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the
environment in a goal-directed manner. Stimulus–response associations are characteristic of instrumental learning, whereas response–
outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results
from a novel task in which stimulus–response and response– outcome associations are learned simultaneously but dominate behavior at
different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of
learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus–response versus response– outcome
learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in represent-
ing prediction errors whenever one of them is dominating choice behavior.
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Introduction
Since the early days of psychology, theorists and experimentalists
have struggled with the question of which associative structures

control human actions (Pavlov, 1927; Thorndike, 1933; Tolman,
1948). Evidence collected over decades of behavioral and neuro-
scientific research indicates that decision-making behavior is un-
der the dynamic control of at least three different systems (Dolan
and Dayan, 2013): (1) a passive Pavlovian system that associa-
tes predictive cues with rewarding or punishing outcomes
(stimulus-outcome learning [S-O]) and that elicits basic ap-
proach or avoidance behavior; (2) an instrumental system that
involves the formation of stimulus–response associations (stimu-
lus–response learning [S-R]) that is initially strengthened by out-
comes, but eventually leads to outcome-insensitive habits; and
(3) a flexible goal-directed system that encodes the relationship
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Significance Statement

Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in
the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error.
Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for
computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced
by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and
encoding error signals regardless of the specific nature of the reinforcer itself.
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between an action and the delivery of its outcome (response–
outcome learning [R-O]) and that is capable of adapting to
changes therein. Although many behavioral phenomena arising
within these systems have been characterized and the underlying,
and partially overlapping, neural circuits have been mapped out
in recent years (Philiastides et al., 2010; Hunt et al., 2012; Daw
and O’Doherty, 2014), there is relatively little knowledge of how
these systems cooperate and compete with each other for the
control over decision-making. Understanding their interaction
may provide insights into pathological disorders of human
decision-making (Everitt and Robbins, 2005; Montague et al.,
2012; Belin-Rauscent et al., 2016).

Recent human neuroimaging studies have revealed the com-
mon and unique neural correlates of S-R and R-O associations by
contrasting habitual with goal-directed control of instrumental
responses (Valentin et al., 2007; Gläscher et al., 2010) and by
studying the transition from goal-directed behavior to habits
through extensive training (Tricomi et al., 2009; Liljeholm et al.,
2015). In a variety of S-R learning tasks, studies have convincingly
revealed activities in both ventral and dorsal striatum which are
consistent with prediction error (PE) signals (Pessiglione et al.,
2008). The R-O learning system also involves the encoding of PE
signals in the striatum as well as value representations in the
orbital and medial prefrontal cortices (Hare et al., 2008; Gläscher
et al., 2009). Together, these findings suggest that S-R and R-O
learning systems converge in the striatum and might lead to de-
cisions concurrently. Yet little is known about how these two
learning systems interact, especially during the formation of their

respective associations, and it remains unclear how the ventral
striatum would be recruited during learning in cases where the
S-R and R-O controllers promote competing actions in parallel.
The present study aims to fill this gap in the field.

To this end, we developed a two-armed bandit task, in which
subjects had to choose a location (left/right) where a stimulus
would appear on a computer screen with a specific probability
that was unknown to the subjects. If the subject made a correct
choice and the stimulus appeared in the chosen location, then
and only then, the subject would receive a reward with another
specific probability. The paradigm thus involves two learning
objectives: (1) to learn where the stimulus is most likely to appear
(i.e., S-R learning); and (2) to learn where the reward is most
likely to be delivered (i.e., R-O learning). We designed two sets of
experimental conditions. In the unbiased condition, the stimulus
appeared with equal probability in either location and was there-
fore uninformative for R-O learning. In the biased condition, the
stimulus appeared in one location with higher probability. Crit-
ically, the smaller reward probability was assigned to the location
with the larger stimulus probability. This created a conflict be-
tween the two objectives that permitted us to disentangle the
interaction of both learning systems.

Materials and Methods
Participants
A total of 29 participants were recruited from the student population at
the University of Hamburg. Each participant was paid a base rate of €10
for participating in the experiment plus a bonus depending on the
amount of money won during the experiment (mean � SEM, €8.9 �
0.26). The final analysis included 27 subjects (mean age, 26 years; age
range, 20 –36 years; 14 male and 13 female). Two subjects were excluded:
one because of excessive head motion and the other because of failure to
perform more than half responses during the task. This study was ap-
proved by the Ethics Committee of the Medical Association of Hamburg
(PV3661).

Experimental design and task
At the beginning of each trial, two lottery boxes were displayed on the
left and right sides of the screen (see Fig. 1A). Subjects were instructed
to predict the location of the lottery ticket by pressing a button with
the right index or middle finger. If the lottery ticket appeared in the

A B

Figure 1. Experimental design. A, Illustration of the lottery prediction task. Subjects had to make a choice between the two white boxes, which appeared on the left and right sides of the central
fixation cross. In this example, the left box was chosen (highlighted in yellow), after which a lottery ticket (fractal image) appeared in one of the two boxes. If the lottery ticket appeared in the chosen
box (here: left side), subjects could receive a coin indicating a reward of 1€ or a crying face indicating no reward. If the lottery ticket appeared in the nonchosen box, subjects always received the
crying face. B, Markov decision process underlying the lottery prediction task. In the first step, the choice action at � �L, R� leads from the initial state, s1, to one of the four “latent states,” s2 :�
(at � L & stimt � L), s3 :� (at � L & stimt � R), s4 :� (at � R & stimt � L), s5 :� (at � R & stimt � R), according to the associated probabilities for the stimulus presentation. In the
second step, a transition takes place to one of the two outcome states “reward,” S6 :� (rt � 1), and “no reward,” S7 :� (rt � 0). Stimulus and reward probabilities shown correspond to the biased
condition. Subjects can select an action only at the initial state s1.

Table 1. Description of experimental conditionsa

Experimental
condition

Stimulus likelihood
(left, right)

Conditional reward
(left, right)

Relative outcome
(left, right)

Biased 1 0.3, 0.7 0.8, 0.2 0.63, 0.37
2 0.7, 0.3 0.2, 0.8 0.37, 0.63

Unbiased 3 0.5, 0.5 0.8, 0.2 0.8, 0.2
4 0.5, 0.5 0.2, 0.8 0.2, 0.8

aLikelihoods for stimulus and reward presentations for the four different experimental conditions. Pairs of numbers
indicate probabilities for the left (first value) and right (last value) locations. “Relative outcome” indicates the
normalized product of stimulus likelihood and conditional reward.
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chosen location, they had a chance to win €1. If the lottery ticket
appeared in the other location, they received no reward. Subjects were
informed that the lottery ticket would occur on each side with a
specific stimulus probability and the reward would be delivered with
a specific reward probability after the lottery ticket appeared in the
chosen location. As a consequence, they might or might not receive a
reward, even though the ticket location had been correctly predicted.
Each trial started with a 2 s interval, during which a fixation cross was
presented at the center of the screen. The two lottery boxes were then
displayed and subjects had to make a choice. If no choice was made
within 2 s, a message “Too slow!” was displayed for 4 s and that
particular trial was abandoned. The chosen box was highlighted, after
which the lottery ticket in the form of a fractal image was shown for
1.5 s. After a jittered interval of 2– 4 s (uniform distribution), the
outcome, either a coin (indicating a reward of €1) or a crying face
(indicating no reward), was presented for 1.5 s. Every participant
completed 8 blocks of 40 trials. We assigned one fractal imager per
block (8 in total) and instructed the subjects that every block required
a different strategy. The assignment of the fractal images and the
ordering of the blocks were fully counterbalanced across subjects.
Every block was scanned as one run in the scanner. We conducted two
runs for each of the 4 experimental conditions (for the stimulus and
outcome contingencies, see Table 1), to make sure that each run was
�10 min and the subjects stayed alert during learning. Behavioral
results are presented in Figure 2 with within-subjects SEM (Loftus
and Masson, 1994; Morey, 2008).

Computational modeling
To explain the subjects’ choice behavior, we considered 6 variants of RL
models. Let at � �L, R� denote the subject’s choice of location in trial t
(L, left; R, right). Let �t � �1, 0� denote whether the subject correctly
indicated the location of the stimulus ��t � 1) or not ��t � 0�. The
reward is denoted by rt � �1, 0�.

Reward model. The first model is the standard Rescorla–Wagner
model (Rescorla and Wagner, 1972). The expected reward EV of the
chosen location is modified at each trial by a reward prediction error
�RPE, which is given by the difference between the received and the ex-
pected rewards as follows:

EVat

t	1 � EVat

t � �1�RPE
t , (1)

�RPE
t � rt � EVat

t . (2)

�1 is the expected reward learning rate.
Stimulus model. The second model applies Rescorla–Wagner type of

learning to estimate the expected stimulus likelihood ES, using a stimulus
prediction error �SPE as follows:

ESat

t	1 � ESat

t � �2�SPE
t , (3)

�SPE
t � �t � ESat

t . (4)

�2 is the stimulus likelihood learning rate.

Hybrid model. Both EV and ES are estimated independently and then
linearly combined using an interaction parameter � whose value changes
with time as follows:

Qat

t � �tESat

t � �1 � �t�EVat

t , (5)

�t � Ie
Kt . (6)

Because of the salience of the visual stimulus, we assume that subjects
start off with stimulus learning and over time they shift to reward learn-
ing. Therefore, we applied a nonlinear weighting function (i.e., � is an
exponential function of trial t) that would reflect such transitions. Both
the initial value I and the slope K are fitted as free parameters; thus, this
exponential function is quite flexible in capturing different functional
forms of the transition (e.g., near linear decrease or exponential in-
crease). While we assume that subjects shift from stimulus to reward
learning, the empirically informed parameter estimates could also ac-
commodate a transition from reward to stimulus learning or no transi-
tion at all. In addition, the reward and stimulus models are nested: i.e.,
the hybrid model reduces to the reward model when I � 0 and to the
stimulus model when I � 1 and K � 0. We analyzed two variants of the
hybrid model using the same (�1 � �2) as well as different (�1 � �2)
learning rates for the stimulus and reward updates (hybrid vs hybrid2LR
model in Table 2).

Forward model. “Model-based” RL requires the agents to learn a
model of the environment. In the case of our lottery prediction task, the
environment (i.e., each trial) is characterized by a two-step Markov decision
process (see Fig. 1B). Let stimt � �L, R� denote the stimulus location at trial t
(L, left; R, right). In the first step, the choice action leads the agent from the
initial state, s1, to one of the four “latent states,” s2 :� (at � L & stimt � L),
s3 :� (at � L & stimt � R), s4 :� (at � R & stimt � L), s5 :� (at � R &
stimt � R), with the associated probabilities for the stimulus presentation. In
the second step, a transition takes place to one of the two outcome states,
“reward” s6 :� (rt � 1) and “no reward” s7 :� (rt � 0). The transition
functions T (s1, at, s), which is the probability distribution by which the
choice action at at state s1 leads to the next state s � �s2,s3, . . . , s5�, and
T(s, s�), which is the reward probability out of s� � �s6,s7�, have to be learned
from experience. Let V(s) and V(s�) be the expected rewards in states s and s�.
After a trial transition through s, we update:

Vt�s� � �s�
Tt�s, s��Vt�s�� , (7)

Tt	1�s, s�� � Tt�s, s�� � ��	s,s� � Tt�s, s���, 
 s� , (8)

Tt	1�s1, at, s� � Tt�s1, at, s� � ��	s1,s � Tt�s1, at, s��, 
 s . (9)

	s,s�, 	s1, s � �0, 1� are binary indicators that equal 1 for the observed
transitions and 0 for the unobserved transitions. The expected reward
out of state s1 is then given by the following:

Qat

t � �s
Tt�s1, at, s�Vt�s� . (10)

Temporal-difference fictive PE (TD FPE) model. Subjects may use in-
formation from the fact that the location of the stimulus is always re-

Table 2. Best-fitting model parameters and DIC valuesa

Model 
DIC Learning rate � Noise parameter � Offset I Decay constant K

Reward 397 0.56, 0.47 0.38, 0.70 — —
Stimulus 412 0.16, 0.11 1.13, 1.76 — —
Hybridb 672 0.32, 0.50 2.07, 0.82 0.97, 0.92 0.09, 0.30
Hybrid2LR 667 �1 �2 1.81, 1.14 0.99, 0.86 0.02, 0.03

0.15, 0.13 0.14, 0.42
Forward 529 0.04, 0.02 6.68, 13.35 — —
TD FPE 608 �1 �2 1.57, 1.09 — —

0.14, 0.23 0.92, 0.92
aThe differences (
DIC) between the DIC scores of the RL learning models and a “random choice” reference model, as well as the maximum a posteriori of the group parameters’ posterior distribution. Pairs of numbers indicate parameter
values derived for the biased (first value) and unbiased (last value) conditions. �1 and �2 indicate the respective stimulus and reward learning rates for the models, for which these values can be different.
bBest model according to the DIC criterion.
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vealed independently of the subjects’ actions by computing FPEs to
estimate the expected stimulus likelihood ES. Therefore, ESs are reesti-
mated for both locations when the stimulus is revealed as follows:

ESL
t	1 � ESL

t � �2�EVL
t � ESL

t � , (11)

ESR
t	1 � ESR

t � �2�EVR
t � ESR

t � . (12)

The estimate of the expected reward EV is changed by Equations 1 and 2
when the outcome is revealed, but only for the chosen location.

Action selection. The probability of taking a choice action for all models
is given by the following:

P�at� �
exp��Vat

�

exp��VL� � exp��VR�
, (13)

with V � {ES, EV, Q} for the different RL models, respectively. � is the
noise parameter, which captures the trade-off between exploration and
exploitation.

Model fitting and parameter estimation
Model fitting and parameter estimation were conducted using a hierar-
chical Bayesian analysis (HBA) (Shiffrin et al., 2008). The model param-
eters that were estimated included the learning rate(s), the noise
parameter, and the offset and decay constant of the interaction parame-
ter. In the Bayesian hierarchical model, individual parameters for each
participant were drawn from group-wise beta distributions initialized
with uniform priors. HBA proceeded to estimate the actual posterior
distribution over the free parameters through Bayes rule by incorporat-
ing the experimental data. The posterior was computed through Markov
chain Monte Carlo (MCMC) methods using the JAGS software (Plum-
mer, 2003). Three MCMC chains were run for 150,000 effective samples
after 150,000 burn-in samples, which resulted in 90,000 posterior sam-
ples after a thinning of 5. Each estimated parameter was checked for
convergence both visually (from the trace plot) and through the Gelman-
Rubin test (Gelman et al., 2013). The maximum a posteriori of the group
parameters’ posterior distribution was used as the best-fitting parameter.

To quantitatively compare the model fit, we computed the Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2002), which is a hier-
archical modeling generalization of the Bayesian information criteria.
The DIC is calculated as DIC � D���� � 2pD, where �� is the average of
the model parameters, D���� is proportional to a log likelihood function
of the data, and pD is the effective number of parameters, all calculated
from the MCMC simulation. D���� measures how well the model fits the
data, whereas pD is a penalty on the model complexity. We reported the
relative DIC scores, 
DIC : � DICrandom � DICRL, where DICrandom is
the DIC score of a random agent (
2 log(0.5) for two choice options),
and DICRL is the DIC score of each candidate model. The 
DIC scores
indicate how much better computational models perform compared
with the null model of random choices. The larger the 
DIC is, the better
a model fits the data. The group parameters were used to generate trial-
by-trial time series for the model-based fMRI analysis because unregu-
larized parameter estimates from individuals tend to be too noisy to
obtain reliable neural results (Daw, 2011).

fMRI data acquisition
fMRI data were collected on a Siemens Trio 3T scanner with a 32-channel
head coil. Each brain volume consisted of 40 axial slices acquired in
descending order, with the following T2*-weighted EPI protocol: repeti-
tion time, 2260 ms; echo time, 26 ms; flip angle, 80°; field of view, 220
mm; slice thickness, 2 mm; interslice gap, 1 mm. Slice orientation was
upward tilted in an oblique orientation of 30° to the anterior-posterior
commissure line to optimize signal quality in the orbitofrontal cortex
(Deichmann et al., 2003). Data for each subject were collected in 8 runs.
The first 4 volumes were discarded to obtain a steady-state magnetiza-
tion. Between runs, subjects were encouraged to take a self-paced break
while keeping their heads still. In addition, a gradient echo field map
(short TE, 5 ms; long TE, 7.46 ms; number of echos, 48; echo spacing,
0.73) was acquired before the EPI scanning to measure the magnetic field
inhomogeneity, and a high-resolution (1 mm 3 voxels) T1-weighted

structural image was acquired after the experiment with an MP-RAGE
pulse sequence.

fMRI data preprocessing
fMRI data analysis was performed using SPM8 (Wellcome Trust Cen-
tre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/). All images were slice-time corrected to the
middle slice. A voxel displacement map was calculated from the field
map to account for the spatial distortion due to the inhomogeneity of
magnetic field. Incorporating the voxel displacement map, the EPI
images were corrected for motion and spatial distortions through
realignment and unwarping (Andersson et al., 2001). Each subject’s
anatomical image was manually reoriented by setting the origin to the
anterior commissure. The EPI images were then coregistered to the
origin-corrected anatomical image. The anatomical image was seg-
mented using the New Segment tool. The gray and white matter
images were used with the DARTEL toolbox to create individual flow
fields (Ashburner, 2007). Finally, the EPI images were normalized to
the MNI space using the respective flow fields and smoothed with a
Gaussian kernel of 8 mm FWHM through DARTEL’s normalization
tool.

Model-based fMRI analysis
We conducted model-based statistical analyses of the fMRI data
(Gläscher and O’Doherty, 2010) by estimating each subject’s time
courses of the �SPE, the �RPE, and the interaction parameter �, using the
maximum a posteriori of the model parameters’ group posterior distri-
bution. The design matrix for the first-level analysis for each of the 8 runs
consisted of the following: (1) two onset regressors for stimulus and
outcome presentations; (2) three parametric regressors calculated from
Equations 2, 4, and 6 of the hybrid model, where the stimulus event was
modulated by � and �SPE, and the outcome event was modulated by �RPE;
and (3) 6 motion parameters and a constant term as nuisance regressors.
All the regressors were convolved with the canonical hemodynamic re-
sponse function and entered into a GLM without orthogonalization. We
avoided the default orthogonalization procedure in SPM to ensure that
each regressor only captures the unique signal variance (Mumford et al.,
2015). Correlation of the �SPE and �RPE regressors was low (mean corre-
lation coefficient � 0.1041, SEM � 0.0047), so was the correlation be-
tween the regressors of � and �SPE (mean correlation coefficient �

0.0072, SEM � 0.0035). Therefore, we were confident to identify dis-
sociable neural correlates for each regressor, if they existed.

We calculated first-level single-subject contrasts for each regressor of
the parametric modulator. We entered the contrasts of PEs to a 2 � 2
repeated-measures ANOVA analysis with factors PE (SPE, RPE) and
condition (biased, unbiased) to test for a significant effect across the
entire group. The contrasts of � served in the second-level group analysis
as a random effect, using one-sample t tests. We chose a whole-brain-
corrected threshold of p � 0.05 as our statistical threshold. In case of
simple effects (e.g., the presence of a specific PE signal tested against an
implicit baseline), we chose a voxel-level whole-brain FWE threshold,
whereas for the more specific differential contrasts (i.e., the interaction
ANOVA contrast and the � contrast), we chose a cluster-level whole-
brain FWE threshold. For display purposes, we showed the statistical
maps at their respective thresholds accordingly. The whole-brain-
corrected cluster thresholds (Forman et al., 1995) were calculated using
the 3dClustSim program in AFNI (version AFNI_16.2.09) (Cox, 1996)
with the following parameters: voxelwise p value 0.001, cluster threshold
0.05, 10,000 simulations, 146,519 voxels in the whole-brain mask, and
the inherent smoothness estimated from the data. The simulation deter-
mined that cluster sizes of 92–143 voxels, depending on the specific
contrast analysis, corresponded to the corrected threshold.

To further show how well the parametric modulators fit the data, we
plotted the regression coefficient of PE regressors with BOLD activity for
the interaction effect (see Fig. 5F ) and percentage signal change (PSC) for
the � modulator (see Fig. 6B) using the rfxplot toolbox (Gläscher, 2009).
For the interaction contrast, the search volume is defined as the region
identified by the group analysis (i.e., see Fig. 5E). For the � contrast, we
used an independent anatomical amygdala mask (Amunts et al., 2005) as
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the search volume. For each subject, the average parameters or PSCs
were extracted from an 8 mm sphere centered on the peak voxel within
the search volume. In Figure 6B, trials were split into 4 bins according
the quartile values of � (i.e., 25th, 50th, 75th, and 100th percentiles),
and the parameters were estimated for the onset regressors of each bin. These
PSCs for each bin indicate the average magnitude of the BOLD response.

Results
Behavioral results
We recorded neural activity using fMRI while participants per-
formed a decision-making task designed to dissociate the neural
basis of S-R and R-O learning. Subjects were told a cover story
which described a lottery prediction task (Fig. 1A) and were in-
formed that they would receive the money they won by the end of
the experiment. Subjects were informed about neither the stim-
ulus nor the outcome contingencies but had to learn both from
repeated trials. In the unbiased conditions, the two locations had
equal stimulus probabilities (i.e., probabilities of the presentation
of the lottery ticket) of 0.5. In the biased conditions, one location
was associated with a higher stimulus probability of 0.7 and the
other location was associated with a lower stimulus probability of
0.3. The probability of reward conditioned on the stimulus was
0.2 (0.8) at the location of higher (lower) stimulus probability
(Table 1). The rationale behind this design was to provide distinct
experimental contexts for the stimulus-induced S-R learning and
the reward-based R-O learning. In the biased condition, subjects
earned €6.9 � 0.21 (mean � SEM, average across subjects),
which was significantly less than what would have been expected
under chance performance (€7.6, average across trials, t(26) � 3.4,
p � 0.002, one-sample t test). This suggests a rather strong influ-
ence of the “misleading” (in terms of maximizing reward) stim-
ulus likelihood. In the unbiased condition on the other hand,
subjects earned €10.9 � 0.46 (mean � SEM, average across sub-
jects), which significantly exceeded the chance performance (€10,
average across trials, t(26) � 2, p � 0.03, one-sample t test) and the
performance in the biased condition (t(26) � 7.9, p � 2.2e-08,
paired t test). This suggests that the reward probabilities had a
stronger influence on subjects’ decisions when the stimulus like-
lihood was uninformative.

Figure 2A shows the percentage of subjects’ left choices in each
condition plotted as a function of the probability that the stimu-
lus appeared on the left side (stimulus likelihood “left,” Table 1).

Under the assumption of a matching response, an optimal
reward-learning model predicts that the proportion of left (right)
choices matches the expected reward observed on the left (right)
side (relative outcome, Table 1). An optimal stimulus-learning
model predicts that the proportion of choices matches the stim-
ulus likelihood. Our data, however, suggest that subjects showed
sensitivity to both sources of information. In the biased condi-
tion, subjects preferred the side of higher stimulus probability but
lower expected reward (Conditions 1 and 2, Fig. 2A; Table 1),
deviating from the objective of maximizing reward. For instance,
despite a reward bias to the left in Condition 1 (Fig. 2A, blue
left-pointing triangle), subjects more often chose the right side.
In the unbiased condition, subjects preferred the side of the
higher expected reward (Conditions 3 and 4, Fig. 2A; Table 1).
This was also revealed by a significant interaction effect in a 2 � 2
repeated-measures ANOVA with the factors of condition (bi-
ased, unbiased) and side of higher expected reward (left, right)
(F(1,26) � 18.93, p � 1.86e-04). The main effects were not signif-
icant (F(1,26) � 1.3, p � 0.3). Furthermore, choice behavior was
consistently symmetric across location-counterbalanced blocks
of trials (Fig. 2A): subjects showed almost the same proportion of
right choices in Condition 1: 54% (Condition 4: 59%) as the
proportion of left choices in Condition 2: 56% (Condition 3:
57%) (t(26) � 0.79, p � 0.43, paired t test). These results suggest
that choice decisions were modulated by both stimulus likeli-
hood and expected reward.

To further explore the subjects’ learning process, we collapsed
data from location-counterbalanced conditions and examined
the change of behavior across trials (Fig. 2B). Subjects chose the
side associated with lower expected reward, but higher stimulus
likelihood, more frequently in the biased condition. The mean
percentage of choices of the side with lower expected reward
decreased in the unbiased condition, from 46% in the first to 41%
in the last quarter of the trial sequence (t(26) � 2.38, p � 0.01,
paired t test). No such decrease was observed in the biased con-
dition. A 2 � 4 (condition � time) repeated-measures ANOVA
revealed a significant main effect of condition (F(1,26) � 14.29,
p � 8.29e-04) and a significant interaction effect (F(3,78) � 3.1,
p � 0.04). The main effect of time was not significant (F(3,78) �
0.4, p � 0.67). These results suggest that subjects’ choices were
initially dominated by S-R learning because the task instructions

A B

Figure 2. Choice behavior. A, Percentage of subjects’ left choices in each condition as a function of the likelihood that the lottery ticket (stimulus) appeared in the left box. Results are shown
separately for the four different conditions (Table 1). The pointing direction of the triangles indicates the side of larger expected reward. Blue represents biased condition. Red represents unbiased
condition. B, Percentage of choices of the side associated with lower expected reward as a function of time. Choice data were binned into four 10-trial bins (trial quarters). Blue represents data for
the biased conditions. Red represents data for the unbiased conditions. Error bars indicate SEM.
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emphasized that a reward could only be obtained if the stimulus
appeared at the chosen location. However, with experience and
gradually more knowledge about the probabilistic structure of
the task, subjects shifted to R-O learning and chose the location
with the higher reward probability to maximize their payoff, even
if that meant choosing the location with the smaller stimulus
likelihood in the biased condition.

Model-based analyses
We developed 6 computational models using the framework of
reinforcement learning (RL) (Sutton and Barto, 1998). We fitted
the RL models to subjects’ trial-by-trial choices using a HBA and
evaluated the relative goodness of fit by the Bayesian model com-
parison index DIC, which takes into account both accuracy of the
fit and model complexity (for details, see Materials and Meth-
ods). Model parameters and DIC values are summarized in Table
2. A difference of DIC scores greater than 10 are considered sub-
stantial (Spiegelhalter et al., 2002).

We extended the trial-based RL schemes to simultaneously
estimate both expected rewards (R-O learning) and stimulus
probabilities (S-R learning) using RPEs and SPEs. Estimates were
additively combined, weighted by an interaction parameter �,
which decayed exponentially with time to capture a potential
shift from stimulus-based to reward-based decisions (hybrid
model). The hybrid model nested two simpler models: (1) a
model where decisions were based on estimates of the stimulus
likelihood, ignoring the fact that subjects were instructed to ac-
quire reward (stimulus model); and (2) a model where decisions
were based on estimates of reward, consistently overcoming any
confounds induced by the stimulus (reward model). The DIC
scores showed that the hybrid model fitted the behavioral data
best, reflecting the finding that subjects’ decisions were influ-
enced by both stimulus and reward. We also evaluated a model
with different learning rates for the stimulus and reward esti-
mates (hybrid2LR model), but the model fits, quantified by the
DIC, did not improve.

We then tested the hypothesis that subjects might learn
stimulus–reward associations (i.e., the conditional probability of
a reward given the stimulus) associated with a location. The corre-
sponding computational model assumed that subjects built a state
space of the task structure (model-based RL) (Gläscher et al., 2010)
and treated the stimuli as different latent states (forward model).
Although the DIC scores suggested that this model reflected the data
better than the stimulus model and the reward model, it did not
outperform the hybrid model. Finally, we asked whether subjects
used information from the fact that the location of the stimulus was
always revealed independent of subjects’ actions by computing fic-
tive PEs (counterfactual learning) (Tobia et al., 2014) for estimating
the stimulus likelihood (TD FPE model), but again, the DIC scores
did not prefer this hypothesis to the hybrid model.

In summary, the DIC scores provided strongest evidence for
the hybrid model, demonstrating that the hybrid model was per-
forming best in predicting subjects’ choices. Figure 3 compares
subjects’ choice behavior with the choice probabilities predicted
by the RL models, showing that the hybrid model outperforms all
the others. The interaction parameter � decayed more quickly in
the unbiased condition, suggesting a faster transition to purely
reward-based choices (Fig. 4A; Table 2). The decay constant K of
� was significantly larger for the unbiased than that for the biased
condition (t(26) � 8.4, p � 6.8e-09, paired t test). The corre-
sponding offset values I of � were not significantly different
(t(26) � 1.9, p � 0.06, paired t test), indicating an initial domi-
nance of stimulus-based decisions for both conditions. Subjects’

performance in terms of accumulated reward was strongly and
positively correlated with the best-fitting values of the decay con-
stant K of � (correlation coefficient � 0.68, p � 1.2e-08; Fig. 4B).

fMRI results
Our model-based behavioral results suggest that subjects were
simultaneously estimating stimulus and reward contingencies
based on separate PEs and dynamically adjusted their decision
strategy toward reward-based choices. Thus, we used the hybrid
model for the model-based fMRI analysis. We first tested for
brain regions showing changes in activity related to the SPE and
the RPE because such representations would be indicative of re-
gions supporting the S-R or R-O learning. We found a coexis-
tence of both PEs in the ventral striatum, suggesting that this
region responded to surprising stimulus events as well as to un-
expected reward delivery or omission. The activation patterns of
the respective PEs were different under different conditions. The
SPE was stronger in the biased condition whereas the RPE was
stronger in the unbiased condition (Fig. 5A–D; Table 3), which
presumably reflect the fact that subjects’ choices were primarily
based on the stimulus likelihood in the biased condition but were
more influenced by the expected reward in the unbiased condi-
tion. The interaction contrast in Figure 5E confirmed our hy-
pothesis about specific, differential involvement of the ventral
striatum in representing different PE signals in various experi-
mental context. The interaction effect is further visualized in
Figure 5F, and additional repeated-measures ANOVA (condi-
tions � PEs) test on the regression coefficients confirmed the
interaction effect (F(1,26) � 16.69, p � 0.0004) as well. These
results indicate that the shift of context from primarily S-R learn-
ing in the biased condition to primarily R-O learning in the un-
biased condition modulated the PE representations in the ventral
striatum.

We next tested for areas showing changes in activity related to
the parametric modulation of the interaction parameter �. We
found significant correlations in the amygdala and a decay of the
PSC with time (Fig. 6; Table 3). These findings suggest that the
amygdala was initially activated, when decisions were stimulus-
based, but that its activation faded away as the decisions became
strongly based on the expected reward. The faster decay across
trials of the amygdala activation in the unbiased condition
matched the faster decay of the interaction parameter � in the
unbiased condition (Fig. 6B vs Fig. 4A). We also examined other
regions (i.e., intraparietal sulcus, occipital and anterior visual
area, Table 3) that were correlated with the interaction parameter
�. After fitting an exponential function to the time courses of the
PSC from each region, only the decay constants from the
amygdala showed significant differences between experimental
conditions (mean � SEM, 0.18 � 0.04 in the unbiased condition
and 0.08 � 0.04 in the biased condition, t(26) � 2.8, p � 0.0048,
paired t test). Thus, although other regions correlated with the
interaction parameter �, only the amygdala exhibited different
decay constants similar to the differences in the decay constants
derived from the behavioral data.

Discussion
Our fMRI analyses revealed that the activations in the ventral
striatum were elicited differentially by two distinct PE signals,
corresponding to stimulus and reward learning. Choice behavior
was mostly consistent with the predictions of an RL model based
on a time-dependent interaction of S-R and R-O associations,
supporting the hypothesis that decisions are dynamically shifted
from mainly stimulus-based to more reward-oriented.
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A B C

D E F

Figure 3. Subjects’ choice behavior in comparison with the choice probabilities predicted by the RL models. The figures show the fraction of subjects’ choices for “left” as a function of the choice probabilities
for“left”predictedbytheRLmodels.Themodel-predictedactionprobabilitywassplit intofiveequal-sizedbins.Theblacklineindicatesanidealmodelfit, inwhichmodel-predictedchoiceprobability(x-axis)and
actual choice probability (y-axis) match perfectly. Actual choice probabilities are computed as the fraction of subjects’ choices, for the trials whose model-predicted action probabilities fell into the respective bins.
Red lines indicate the mean actual choice probability across subjects with respect to the model-predicted choice probability. Error bars indicate SEM. Smaller deviations between the red and the black line indicate
a better model fit to the data. Comparison of the different model fits shows that the hybrid model outperforms all others.

BA

Figure 4. Model-based behavioral analysis. A, Interaction parameter � as a function of trial number for the biased (blue) and unbiased (red) experimental conditions. Shading represents the SEM
for each subject’s trace of the best-fitting �. B, Scatter plot of subjects’ accumulated rewards plotted against the best-fitting decay constant K. Data indicate subjects’ mean accumulated rewards,
averaged across blocks of the same condition. Accumulated reward increased with larger values of the decay constant. Black line indicates the result of a linear regression (y�14.4 x	6, r 2 �0.47).
Blue represents data for the biased conditions. Red represents data for the unbiased conditions.
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Hierarchical structure of stimulus-based and
reward-based learning
On each trial, our task has two levels of hierarchy (stimulus and
outcome), and the subjects must update their knowledge about
both events. The stimulus has no direct bearing on the subjects’
actual benefit in terms of earning a greater amount of reward but
initially dominates the subjects’ choices. One plausible explana-
tion is that expected values for both stimuli and rewards are
represented via a common currency and reinforce actions by the
same RL mechanism. Our results are most directly comparable
with those of Diuk et al. (2013), which demonstrated two simul-

taneous, but separable, RPEs in the ventral striatum in humans
performing a hierarchical gambling task. Their task also has two
levels of hierarchy (casinos and slot machines), and the subjects
are asked to estimate expected rewards at both levels. Their re-
sults provide neural evidence for the idea that PEs arise from
events at each level of a hierarchical RL (Botvinick, 2012) but
leaves open the question of whether the ventral striatum also
represents PEs in response to task subroutines that are not them-
selves directly associated with rewards. Our results address this
question by showing that the learning of a nonrewarding subrou-
tine is driven by an SPE signal in the ventral striatum.

BA

DC

E

F

Figure 5. Neural representations of SPEs and RPEs. A–D, Maps of the T-statistics for the correlations with the SPE and RPE from both conditions. E, Map of the T-statistics for the interaction effect
with factors PE (SPE, RPE) and condition (biased, unbiased). F, Correlation of the BOLD activity with the SPE (dark gray) or RPE (light gray) regressor for each condition, regression coefficient extracted
from an 8 mm sphere centered on the peak voxel within the region identified in E. Error bars indicate SEM. Results are shown at y � 8 (MNI coordinates), p � 0.05, whole-brain FEW-corrected.

Table 3. Statistical results for the contrasts of the parametric regressorsa

Contrast Region Hemisphere x y z Peak T

SPE Putamen L 
14 8 
9 10.68
Caudate R 12 10 
6 9.79
Inferior occipital gyrus L 
26 
92 
6 14.03

R 30 
92 
3 14.54
RPE Putamen L 
10 10 
6 9.24

Caudate R 12 12 
3 11.20
Insula L 
30 22 
6 11.56

R 34 22 
3 12.29
Anterior cingulate cortex R 10 42 12 9.83
Middle frontal gyrus R 44 50 6 8.05
Superior frontal gyrus R 6 26 45 7.13

Interaction of PEs and conditions (ANOVA) Putamen L 
12 8 
9 4.92
Interaction parameter � Amygdala L 
20 
4 
18 4.91

R 22 0 
21 6.08
Fusiform gyrus L 
34 
48 
15 10.46

R 34 
36 
21 9.88
Inferior occipital gyrus L 
38 
76 
12 8.74

R 38 
74 
12 10.39
IPS/superior parietal lobe L 
30 
60 45 6.33
IPS/angular gyrus R 34 
56 48 6.81

aCoordinates for the peak voxel and its maximum T value. All peaks are corrected for a whole-brain comparison threshold of p � 0.05. L, Left; R, right; IPS, intraparietal sulcus.
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Implications for the ventral striatum
In addition to the original RPE hypothesis (Tobler et al., 2006),
our hybrid model computes the SPEs exactly in the same way as
computing the RPEs, but renders orthogonal teaching signals.
This suggests that the ventral striatum may encode PE signals
regardless of the specific nature of the reinforcer itself. Consistent
with this idea, recent fMRI studies have revealed a much broader
function of the PE computations in the ventral striatum, includ-
ing state PE in model-based RL learning (Daw et al., 2011), fictive
PE in counterfactual learning (Lohrenz et al., 2007), and PEs for
social decision-making (Ruff and Fehr, 2014). These findings,
when taken together with our results, point to a universal role of
the ventral striatum in multiple forms of learning.

The BOLD activity in the ventral striatum of humans is pre-
sumably associated with the dopaminergic projections from the
midbrain (Haber and Knutson, 2010), and recent physiological
recordings in primates have suggested that the midbrain
dopamine neurons (i.e., the RPE-coding neurons) (Bayer and
Glimcher, 2005) generate PE signals in a similar manner for un-
rewarded sensory cues in rewarded contexts (Bromberg-martin
and Hikosaka, 2009; Kobayashi and Schultz, 2014). The biologi-
cal reward-learning system may thus take the reward-predicting
cues as a proxy for the primary reward, which may explain why
subjects make nonoptimal choices under certain circumstances.
The selective representation of different PE signals in the ventral
striatum, however, raises questions about the timing at the neu-
ronal level. Does the entire population of neurons encode both
prediction errors in a serial manner, but at a finer temporal scale?
Or do subgroups of neurons exist, which encode the different
prediction errors in parallel? Such questions invite further single-
unit electrophysiological recordings in animals performing sim-
ilar hierarchical tasks that require the computation of multiple,
simultaneous prediction errors.

Amygdala’s involvement in the stimulus and reward learning
Our results suggest that the BOLD activity in the amygdala re-
flects the weighting of S-R and R-O controllers, matching the one
that dominates decisions. This finding is consistent with a con-
tribution of the amygdala in representing motivational control of
instrumental responses (Baxter and Murray, 2002; Balleine and

Killcross, 2006). Previous studies mainly demonstrated amygda-
la’s involvement in mediating between S-O and R-O associations
by using the Pavlovian-to-Instrumental Transfer paradigm
(Huys et al., 2011; Prévost et al., 2012; Hebart and Gläscher,
2015), where the two associations are learned separately and their
interaction is examined afterward during extinction. However,
our subjects had no prior training for associating the stimulus to
primary reward. Our results therefore demonstrate that amygda-
la’s involvement in motivational influences is not restricted to
Pavlovian-to-Instrumental Transfer.

What then is the amygdala’s exact role in the behavioral
control of S-R and R-O associations? One possibility is that the
amygdala is sensitive to environmental uncertainty. The grad-
ual decrease of the amygdala activation in the course of our
experiment is consistent with early studies (Büchel et al., 1998;
Davis and Whalen, 2001) interpreting such a pattern as uncer-
tainty or novelty coding. However, there are two sources of
uncertainty in our task: one associated with the stimulus like-
lihood and the other associated with the reward probabilities.
Both human and animal studies have demonstrated the
amygdala’s engagement in learning environmental contingen-
cies (Hsu et al., 2005; Herry et al., 2007; Madarasz et al., 2016),
showing greater activation of the amygdala in response to
stimuli associated with greater degrees of uncertainty or un-
predictability. Thus, the greater amygdala response in the bi-
ased condition of our task may reflect a greater amount of
reward uncertainty due to the conflict between stimulus and
reward likelihood. Computational analysis (Li et al., 2011) has
also suggested that the amygdala might gate the strength of RL
learning according to the estimated uncertainty (associabil-
ity). A question for future research is how the amygdala might
balance between different types of uncertainty that could arise
between parallel learning processes.

Another possibility is that the amygdala negotiates between
the S-R and R-O controllers through attention-guided value cod-
ing. Previous studies have shown that the amygdala integrates
information about both the spatial configuration of visual stimuli
and the reward values (Peck et al., 2013; Ousdal et al., 2014) such
that the processing resources are allocated to selective informa-
tion in a given situation. This explains why subjects went for the

A B

Figure 6. Neural correlations to the weighting of S-R and R-O learning. A, Map of the T-statistics for the neural modulation by the time-dependent interaction parameter �, p � 0.05,
whole-brain FWE corrected. B, Mean percentage signal change for the parametric modulator encoding �, extracted from an 8 mm sphere centered on the peak voxel within an independent
anatomical amygdala mask. Trials were split into four 10-trial bins (trial quarter) according to the quartile values of the parametric regressor. Blue represents data for the biased conditions. Red
represents data for the unbiased conditions. Error bars indicate SEM.
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stimulus location but gradually shifted their focus to the reward
location. At the neural level, the stimulus may have engaged more
cognitive attention at the initial stage of learning, especially in the
biased condition. The amygdala is likely to assemble different
sources of information and negotiate multiple valuation systems
by virtue of its anatomical and functional interconnection with
the ventral visual stream (Pessoa and Adolphs, 2010), prefrontal
cortex (Hampton et al., 2007), and ventral striatum (Seymour
and Dolan, 2008; Popescu et al., 2009).

Stimulus-based learning and model-based RL
Our results paint a different picture of the negotiations between
multiple learning systems compared with recent works contrast-
ing model-free and model-based RL algorithms (Gläscher et al.,
2010; Daw et al., 2011; Lee et al., 2014). These studies used mul-
tistep Markov tasks with uniquely identifiable state and action
cues, whereas in our task the state structure is not directly iden-
tifiable. Although it is possible to formally conceptualize our task
as a two-step Markov decision process (forward model in Table
2), the intermediate states have to be inferred from the presence
(forward model, states 2 and 5 in Fig. 1B) or absence (forward
model, states 3 and 4 in Fig. 1B) of the stimulus. Learning transi-
tions from such nonunique intermediate states would require a
high cognitive effort. Furthermore, the fact that the forward
model did not provide a superior model fit to the data supports
the rejection of our task as a multistep Markov decision problem.

Whereas an early study (Gläscher et al., 2010) reported evi-
dence for a time-dependent transition from R-O to S-R learning,
our computational analysis, however, showed a transition in the
opposite direction. This suggests that the negotiation between the
two systems might flexibly depend on the motivational context
and on which system is triggered first. The initial absence of
rewards in the study of Gläscher et al. (2010) triggered model-
based learning of state transitions first. Our emphasis on the
stimulus as an inevitable, but sometimes misleading cue on the
“path to reward,” put the initial focus on S-R learning, which
gradually gave way to R-O learning.

In conclusion, we found a contextual modulation of PE rep-
resentations in the ventral striatum during instrumental and
goal-directed learning. A parsimonious explanation for the pres-
ent results is that multiple valuation systems may be integrated
into a single coherent decision-making framework through the
functions of ventral striatum and amygdala.
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Seifritz E (2007) Processing of temporal unpredictability in human and
animal amygdala. J Neurosci 27:5958 –5966. CrossRef Medline

Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF (2005) Neural systems
responding to degrees of uncertainty in human decision-making. Science
310:1680 –1683. CrossRef Medline

Guo et al. • Contextual Modulation of Prediction Error J. Neurosci., December 14, 2016 • 36(50):12650 –12660 • 12659

http://dx.doi.org/10.1007/s00429-005-0025-5
http://www.ncbi.nlm.nih.gov/pubmed/16208455
http://dx.doi.org/10.1006/nimg.2001.0746
http://www.ncbi.nlm.nih.gov/pubmed/11304086
http://dx.doi.org/10.1016/j.neuroimage.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17761438
http://dx.doi.org/10.1016/j.tins.2006.03.002
http://www.ncbi.nlm.nih.gov/pubmed/16545468
http://dx.doi.org/10.1038/nrn875
http://www.ncbi.nlm.nih.gov/pubmed/12094212
http://dx.doi.org/10.1016/j.neuron.2005.05.020
http://www.ncbi.nlm.nih.gov/pubmed/15996553
http://dx.doi.org/10.1016/j.biopsych.2015.01.004
http://www.ncbi.nlm.nih.gov/pubmed/25747744
http://dx.doi.org/10.1016/j.conb.2012.05.008
http://www.ncbi.nlm.nih.gov/pubmed/22695048
http://dx.doi.org/10.1016/j.neuron.2009.06.009
http://www.ncbi.nlm.nih.gov/pubmed/19607797
http://dx.doi.org/10.1016/S0896-6273(00)80476-6
http://www.ncbi.nlm.nih.gov/pubmed/9620699
http://dx.doi.org/10.1006/cbmr.1996.0014
http://www.ncbi.nlm.nih.gov/pubmed/8812068
http://dx.doi.org/10.1038/sj.mp.4000812
http://www.ncbi.nlm.nih.gov/pubmed/11244481
http://dx.doi.org/10.1016/j.neuron.2011.02.027
http://www.ncbi.nlm.nih.gov/pubmed/21435563
http://dx.doi.org/10.1016/S1053-8119(03)00073-9
http://www.ncbi.nlm.nih.gov/pubmed/12814592
http://dx.doi.org/10.1523/JNEUROSCI.5445-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23536092
http://dx.doi.org/10.1016/j.neuron.2013.09.007
http://www.ncbi.nlm.nih.gov/pubmed/24139036
http://dx.doi.org/10.1038/nn1579
http://www.ncbi.nlm.nih.gov/pubmed/16251991
http://dx.doi.org/10.1002/mrm.1910330508
http://www.ncbi.nlm.nih.gov/pubmed/7596267
http://dx.doi.org/10.1007/s12021-008-9042-x
http://www.ncbi.nlm.nih.gov/pubmed/19140033
http://dx.doi.org/10.1002/wcs.57
http://www.ncbi.nlm.nih.gov/pubmed/26271497
http://dx.doi.org/10.1093/cercor/bhn098
http://www.ncbi.nlm.nih.gov/pubmed/18550593
http://dx.doi.org/10.1016/j.neuron.2010.04.016
http://www.ncbi.nlm.nih.gov/pubmed/20510862
http://dx.doi.org/10.1038/npp.2009.129
http://www.ncbi.nlm.nih.gov/pubmed/19812543
http://dx.doi.org/10.1016/j.neuron.2007.07.022
http://www.ncbi.nlm.nih.gov/pubmed/17698008
http://dx.doi.org/10.1523/JNEUROSCI.1309-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18509023
http://dx.doi.org/10.1007/s00213-014-3682-3
http://www.ncbi.nlm.nih.gov/pubmed/25034118
http://dx.doi.org/10.1523/JNEUROSCI.5218-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17537966
http://dx.doi.org/10.1126/science.1115327
http://www.ncbi.nlm.nih.gov/pubmed/16339445


Hunt LT, Kolling N, Soltani A, Woolrich MW, Rushworth MF, Behrens TE
(2012) Mechanisms underlying cortical activity during value-guided
choice. Nat Neurosci 15:470 – 476. CrossRef Medline

Huys QJ, Cools R, Gölzer M, Friedel E, Heinz A, Dolan RJ, Dayan P (2011)
Disentangling the roles of approach, activation and valence in instrumen-
tal and pavlovian responding. PLoS Comput Biol 7:e1002028. CrossRef
Medline

Kobayashi S, Schultz W (2014) Reward contexts extend dopamine signals to
unrewarded stimuli. Curr Biol 24:56 – 62. CrossRef Medline

Lee SW, Shimojo S, O’Doherty JP (2014) Neural computations underlying
arbitration between model-based and model-free learning. Neuron 81:
687– 699. CrossRef Medline

Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND (2011) Differential
roles of human striatum and amygdala in associative learning. Nat Neu-
rosci 14:1250 –1252. CrossRef Medline

Liljeholm M, Dunne S, O’Doherty JP (2015) Differentiating neural systems
mediating the acquisition vs expression of goal-directed and habitual
behavioral control. Eur J Neurosci 41:1358 –1371. CrossRef Medline

Loftus GR, Masson ME (1994) Using confidence intervals in within-subject
designs. Psychon Bull Rev 1:476 – 490. CrossRef Medline

Lohrenz T, McCabe K, Camerer CF, Montague PR (2007) Neural signature
of fictive learning signals in a sequential investment task. Proc Natl Acad
Sci U S A 104:9493–9498. CrossRef Medline

Madarasz TJ, Diaz-Mataix L, Akhand O, Ycu EA, LeDoux JE, Johansen JP
(2016) Evaluation of ambiguous associations in the amygdala by learning
the structure of the environment. Nat Neurosci 19:965–972. CrossRef
Medline

Montague PR, Dolan RJ, Friston KJ, Dayan P (2012) Computational psy-
chiatry. Trends Cogn Sci 16:72– 80. CrossRef Medline

Morey RD (2008) Confidence intervals from normalized data: a correction
to Cousineau. Tutor Quant Methods Psychol 4:61– 64. CrossRef

Mumford JA, Poline JB, Poldrack RA (2015) Orthogonalization of regres-
sors in fMRI models. PLoS One 10:1–11. CrossRef Medline

Ousdal OT, Specht K, Server A, Andreassen OA, Dolan RJ, Jensen J (2014)
The human amygdala encodes value and space during decision making.
Neuroimage 101:712–719. CrossRef Medline

Pavlov IP (1927) Conditioned reflexes. New York: Dover.
Peck CJ, Lau B, Salzman CD (2013) The primate amygdala combines infor-

mation about space and value. Nat Neurosci 16:340 –348. CrossRef
Medline

Pessiglione M, Petrovic P, Daunizeau J, Palminteri S, Dolan RJ, Frith CD
(2008) Subliminal instrumental conditioning demonstrated in the hu-
man brain. Neuron 59:561–567. CrossRef Medline

Pessoa L, Adolphs R (2010) Emotion processing and the amygdala: from a
“low road” to “many roads” of evaluating biological significance. Nat Rev
Neurosci 11:773–783. CrossRef Medline

Philiastides MG, Biele G, Heekeren HR (2010) A mechanistic account of
value computation in the human brain. Proc Natl Acad Sci U S A 107:
9430 –9435. CrossRef Medline

Plummer M (2003) JAGS: a program for analysis of Bayesian graphical mod-
els using Gibbs sampling. In: Proceedings of the 3rd International Work-
shop on Distributed Statistical Computing (DSC 2003) (Hornik K, Leisch
F, Zeileis A, eds). Technische Universität Wien, Vienna: Achim Zeileis.
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