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Summary

Learning can be characterized as the extraction of re-
liable predictions about stimulus occurrences from
past experience. In two experiments, we investigated
the interval of temporal integration of previous learn-
ing trials in different brain regions using implicit and
explicit Pavlovian fear conditioning with a dynami-
cally changing reinforcement regime in an experimen-
tal setting. With formal learning theory (the Rescorla-
Wagner model), temporal integration is characterized
by the learning rate. Using fMRI and this theoretical
framework, we are able to distinguish between learn-
ing-related brain regions that show long temporal in-
tegration (e.g., amygdala) and higher perceptual re-
gions that integrate only over a short period of time
(e.g., fusiform face area, parahippocampal place area).
This approach allows for the investigation of learning-
related changes in brain activation, as it can dissoci-
ate brain areas that differ with respect to their inte-
gration of past learning experiences by either comput-
ing long-term outcome predictions or instantaneous
reinforcement expectancies.

Introduction

Learning can be characterized by the acquisition of
knowledge of reliable relationships between occur-
rences of contingent events in the environment (Schultz
and Dickinson, 2000). For example, a mailman might
associate a particular part of his daily delivering route
with the occurrence of an aggressive, freely roaming
dog. This stimulus-stimulus association manifests itself
in probabilistic predictions of an event given some
other event. Two necessary prerequisites exist in order
to acquire valid and reliable stimulus predictions: (1) a
correlation between two events, such that the occur-
rence of one event predicts the other with a specific
probability (contingency), e.g., the co-occurrence of the
dog at a particular part of the delivering route on sev-
eral days; and (2) the organism (e.g., the mailman)
needs to process and represent this correlation by
means of integrating past experiences of these two
events (temporal integration). However, in a dynami-
cally changing environment, the contingency between
two events might change (e.g., the owner and dog
might go on vacation and return a few weeks later).
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Consequently, these changes in contingencies would
also have to be represented.

How would an organism respond to such variation in
learned contingencies? One possible solution would be
to immediately adapt the stimulus prediction to reflect
only the recent learning trials. While this is advanta-
geous if the contingency change remains intact (e.g.,
another attack is imminent), it is maladaptive if the con-
tingency violation is only a random event. Another pos-
sible solution would be to only slowly adapt the stimu-
lus prediction and rely more strongly on the established
contingency of the past learning history. The latter
strategy is targeted toward the optimization of long-
term behavioral adaptation, while under the former, ad-
ditional resources for an increased alertness level are
made available on a short-term basis. Balancing these
two strategies based on the evaluation of the current
situation provides the basis for flexible and adaptive
behavior. It is therefore likely that the central nervous
system of a behaving organism has the computational
capabilities of representing both long- and short-term
strategies by means of a different degree of temporal
integration, possibly in distinct brain regions.

Pavlovian conditioning is a very basic type of learn-
ing ideally suited to investigate the formation of stimu-
lus predictions and the interval of temporal integration
in an experimentally controlled setting (Pavlov, 1927). In
this procedure, a neutral stimulus acquires a predictive
value, thus becoming a conditioned stimulus (CS), for
the occurrence of a biologically salient, unconditioned
stimulus (US) when the two are consistently paired. The
rationale behind Pavlovian conditioning rests on the
notion of reinforcement contingency (probability of US
occurrence given the CS) as the association-forming
force of learning, while at the same time decreasing the
importance of the spatiotemporal relationship (contigu-
ity) of the two stimuli (Rescorla and Wagner, 1972).

Previous studies investigating the neural correlates
of Pavlovian conditioning have identified medial tempo-
ral lobe (MTL) structures (e.g., the amygdala and the
hippocampus). While the amygdala is thought to be in-
volved in the formation of the CS-US association (Le-
Doux, 2000; Maren, 2001), the hippocampus is thought
to be important for the maintenance of the CS repre-
sentation in trace conditioning paradigms in which CS
and US are separated in time (Eichenbaum and Cohen,
2001). Functional neuroimaging studies have confirmed
the involvement of the abovementioned structures in
aversive fear-conditioning studies (Buchel et al., 1999;
Buchel et al., 1998; Cheng et al., 2003; Jensen et al.,
2003; Knight et al., 2004; LaBar et al., 1998; Morris et
al., 2001).

Almost all of these studies have acquired imaging
data only during acquisition, with the exception of La-
Bar and colleagues (LaBar et al., 1998), who also scanned
the extinction phase. Thus, despite occasional pretrain-
ing habituation, none of these studies have investigated
the dynamics of changes in contigency. Differential condi-
tioning (reliable US predictions) is commonly demon-
strated by (1) categorical comparisons between rein-
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forced (CS+) and nonreinforced (CS–) conditioned stimuli
(i.e., Jensen et al., 2003) or (2) increases or decreases
in brain activation during CS processing in the form of
a time × condition (CS+/CS−) interaction (Buchel et al.,
1999; Buchel et al., 1998; Gottfried et al., 2002; Morris
et al., 2001). However, changes over time can be con-
founded by effects not related to learning per se, like
habituation. One way to investigate how and where the
brain represents the stimulus predictions is to system-
atically manipulate the CS-US contingency, i.e., dynam-
ically change the probability of reinforcement (US oc-
currence), thus simulating changes of the correlative
structure of events as they can occur in real-world
learning settings.

Another prerequisite for Pavlovian conditioning is the
temporal integration of past experiences for the detec-
tion of the correlative structure between contingent
events. This question can be ideally investigated by
employing formal learning theories, since they embody
the temporal integration as a model parameter. Compu-
tational models of Pavlovian conditioning like the Res-
corla-Wagner (RW) model (Rescorla and Wagner, 1972)
rest on the prediction error as the reinforcement signal
(Vogel et al., 2004) and have been very successful in
describing behavior (Miller et al., 1995) and neuronal
activity (Schultz et al., 1997; Schultz and Dickinson, F
2000) in the course of learning. The prediction error re- m

fers to the difference between the actual (Rt) and the (
fpredicted outcome (Vt) of a particular learning trial t.
sThis error is subsequently used to adapt future predic-
ftions. The RW model is an important trial-based model
pof prediction error learning, which conceptualizes the (

updating of stimulus predictions Vt as the sum of the f
previous predictions and the weighted prediction error (
[Vt−1 + �(Rt − Vt)] (equations adopted from Dayan and
Abbott, 2001). Thus, the updating of stimulus predic-

s
tions relies on two sources: (1) the past (long-term)

c
learning history that accumulates in Vt–1 and (2) the in-

c
stantaneous (short-term) prediction error (Rt – Vt) that

(relates current outcome to the previous learning his-
ttory. Crucially, the learning parameter � regulates the
pinfluence of the current prediction error in the predic-

tion update. If the parameter � is high, the current pre-
rdiction error exerts a strong influence on the prediction
wupdate, thus ignoring past experience as the primary
minfluence. Conversely, if � is low, the prediction update
mis primarily driven by past learning experience, mostly
cdisregarding current prediction error (see Figure 1).
rThus, the learning parameter � can be seen as a time
tconstant that captures the interval of temporal inte-
fgration of past learning experiences in different brain
pregions. Functional neuroimaging is ideally suited to
sdetect this integration, as it is capable of assessing ac-
ptivity changes in multiple brain areas at the same time

during learning. Long temporal integration suggests a
wsustained representation of the acquired value in form
tof the stimulus prediction, while short temporal integ-
Wration can be interpreted as an anticipatory signal en-
icoding the instantaneous reinforcement expectancy.
(Hence, we developed an fMRI experiment for Pavlov-
aian fear conditioning in which reinforcement contingen-
tcies were systematically varied during the course of the

experiment. This resulted in experimental phases in
which the CS reliably predicted the presence or ab- t
igure 1. Predictions from the Rescorla-Wagner Model and Experi-
ental Design for Experiment 1

A and B) Event train (stick function) and contingency threshold
unction (sine waves) for face CS (blue) and house CS (red). Long
ticks indicate reinforced CSs (CS+); short sticks indicate nonrein-
orced CSs (CS–). CSs were presented in the background; subjects
erformed a one-back working memory task in the foreground.

C–F) Predictions derived from the Rescorla-Wagner model for the
ace CS (blue) and the house CS (red) at two different learning rates
� = 0.05 and 0.95).
ence of the US and intermediate phases in which the
ontingencies were unclear (see Experimental Pro-
edures and Figure 1). We chose two visual stimuli

face/house) as CSs and an aversive pain stimulus as
he US (pricking laser pain in experiment 1 and heat
ain delivered by a thermode in experiment 2).
In order to prevent subjects from developing elabo-

ate cognitive strategies for predicting US occurrence,
e chose an implicit conditioning paradigm in experi-
ent 1 and distracted them with a simple working
emory (WM) task (Carter et al., 2003). As a physiologi-

al index of learning, we collected skin conductance
esponses (SCRs) throughout the first experiment. Fur-
hermore, we sought to replicate and generalize the
indings in experiment 1 and adopted a similar, but ex-
licit conditioning paradigm in experiment 2, in which
ubjects were asked to provide online ratings of US ex-
ectancy.
Imaging data were analyzed within the RW frame-
ork employing either a low or a high learning parame-

er � to determine the interval of temporal integration.
e expected brain regions known for their involvement

n learning and memory (such as MTL structures)
Buchel et al., 1998, 1999; Jensen et al., 2003; Morris et
l., 2001; Ploghaus et al., 2001) to be best charac-
erized by long temporal integration (low �).

Conversely, by means of short temporal integration,
he brain is able to generate an anticipatory signal that
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could selectively modulate the processing in percep-
tual areas (e.g., processing enhancement in expecta-
tion of upcoming aversive reinforcement). Thus, we ex-
pected to find short temporal integration (high �) in
areas related to perceptual processing in the ventral
visual system (Epstein et al., 1999; Kanwisher et al.,
1997).

Results and Discussion

Experiment 1
Prior to data analysis, we verified that subjects main-
tained a high level of target detection accuracy and
showed typical activations for painful laser stimulation
(see the Supplemental Results available with this arti-
cle online).
Skin Conductance Data
The demonstration of differential conditioning (CS+ ver-
sus CS–) after the acquisition phase is a widely ac-
cepted index for learning in a Pavlovian conditioning
experiment (Knight et al., 2003; Ohman and Soares,
1994, 1998). However, in a design with variable contin-
gencies, it is difficult to select those trials in which a
CS reliably predicts US presence (CS+) or absence
(CS−). We compared the mean skin conductance re-
sponse (SCRs) of “high” versus “low” contingency CSs
(for threshold, see Experimental Procedures) in a paired
t test across all subjects and found a significant dif-
ferential conditioning effect (T13 = 2.29, p < 0.05). De-
tailed inspection of the data revealed that this signifi-
cant differential conditioning effect was limited to the
face CS (T13 = 2.30, p < 0.05) and did not occur for the
house CS (T13 = 0.46, p > 0.6) (Figure 2A).
Imaging Data
In order to investigate the regional specificity of the in-
terval of temporal integration, we included regressors
encoding the RW predictions with a low and a high
learning rate (� = 0.05 and 0.95, respectively, see Fig-
ures 1C–1F) in the first level analysis (for identification
of � values see Experimental Procedures). The predic-
tion regressor allows for an amplitude modulation of
the modelled BOLD response. These prediction regres-
Figure 2. Behavioral Data from Both Experiments

(A) Mean skin conductance response (second interval reponses,
see Experimental Procedures) to all four CS event types in experi-
ment 1 across subjects (error bar, SEM). F+/H+, reinforced face/
house CS; F–/H–, nonreinforced face/house CS.
(B) Mean expectancy ratings for all four CS types in experiment 2
across subjects (error bar, SEM). Labels as in panel (A).
sors were then compared with differential contrasts in
a repeated-measures ANOVA at the second level, treat-
ing subjects as the random effect.

First, we calculated the contrast low > high � regres-
sors. This effect is demonstrated in the left amygdala
(trend level in the right reported here for the similarity
of the parameter estimates) (Figure 3A). Other brain re-
gions showing a similar response pattern in the same
contrast are bilateral nucleus accumbens, bilateral ven-
tral putamen, and bilateral hippocampus (see Figure
S1). Further regions (Table 1, part I) were midcingulate,
perigenual cingulate cortex, the hand area of primary
somatosensory cortex (S1) contralateral to the stim-
ulated hand, and the red nucleus. Interestingly, the dif-
ferential effect of low > high � prediction regressor was
more pronounced for the face CS, paralleling our re-
sults in the autonomic data (see parameter estimates
in Figure 3A). Table 1 (part I) lists the Z values for all
of the aforementioned regions that correspond to the
particular volumes of interest.

The interpretation of the response pattern of parame-
ter estimates (β weights) displayed adjacently to the
statistical maps is complicated because the sign and
the relative size of both low and high � estimates influ-
ence the modulation of the fitted response in the partic-
ular voxel. A negative estimate reverses the direction of
the modulation, while the relative size of the estimates
determines which regressor dominates the modulation
of the fitted response. In order to visualize the com-
bined effects of both high and low � modulation, we
plotted the fitted predictions in the left amygdala (Fig-
ures S3C and S3D). This figure clearly shows a distinct
modulatory pattern depending on the CS type (face/
house): while the influence of the low � prediction domi-
nates the modulation for the face CS, the modulation
for the house CS is primarily driven by the negative high
� prediction yielding an increasing modulatory influence
on the BOLD response in the left amygdala during
phases of nonreinforcement.

In contradistinction, the reverse contrast (high > low
� prediction regressors) yielded a significant effect in
the left fusiform face area (FFA, Figure 3B). Further re-
gions that showed a similar effect were found in bilat-
eral anterior insula and in the left lateral orbitofrontal
cortex (Figure S2). Table 1 (part II) lists the Z values for
these regions that correspond to the particular volumes
of interest. The pattern of high and low � estimates in
these regions suggests a different modulatory influence
of the RW prediction than in the amygdala (Figures S1E
and S1F): the modulations of BOLD responses to the
face CS are almost entirely influenced by the high �
prediction, while the negative low � prediction exerts an
influence only for the house CS, yielding a response
pattern in which the modulation decreases as the
house becomes more and more predictable of the US
occurrence.

Experiment 2
We conducted a second experiment in order to repli-
cate and generalize our findings with an explicit version
of the task and to overcome potential explanatory con-
founds of the previous experiment. In experiment 1, all
subjects were presented with the same event train.
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Figure 3. Neuroimaging Results from Experi-
ment 1

(A) Brain activations to low > high � predic-
tion regressors in experiment 1. The SPM
(threshold: p < 0.01) shows significant clus-
ters of activation in the left amygdala (trend
level on the right). The bar graphs to the left
and right display the mean parameter esti-
mates of both low and high � prediction re-
gressors (across subjects) for both CSs in
the peak activation voxel (in MNI space) of
the circled clusters shown in the SPM (error
bar, 90% c.i.). Flow/Fhigh, prediction regres-
sor for the face CS with low/high learning
rate; Hlow/Hhigh, prediction regressor for
the house CS with low/high learning rate.
(B) Brain activations to high > low � predic-
tion regressors in experiment 1. The SPM
(threshold: p < 0.01) shows significant clus-
ters of activation in the left FFA. Bar graphs
display the mean parameter estimates for
the peak voxel in the FFA as in panel (A).
random 50% partial reinforcement in the event trainparadigm in experiment 1. Thus, in a different version

Table 1. Statistical Results of Experiment 1 Corrected for Spherical Search Volumes at the Peak Voxel in MNI Space

I. Low > High � Prediction Regressor

Left Hemisphere Right Hemisphere

Region x y z Z x y z Z

Amygdala −18 0 −15 2.96 * 30 0 −12 2.51 (n.s, p = 0.099)
Hippocampus −27 −12 −18 4.15 *** 30 −15 −15 3.59 **

24 −18 −15 3.58 **
Nucl. Accumbens −9 6 −9 3.23 * 12 −15 −12 3.44 **

−12 9 −9 2.96 * 9 9 −3 2.69 *
Ventral Putamen −30 6 −12 2.76 * 33 6 −12 3.73 **
Red nucleus −9 −15 −15 2.79 * 12 −15 −12 3.33 **
Mid-cing. Cortex −3 3 36 3.15 *
Perigenual ACC 0 36 6 3.84 **
Hand area S1 39 −30 63 3.41 **

II. High > Low � Prediction Regressor

Left Hemisphere Right Hemisphere

Region x y z Z x y z Z

Fusiform Gyrus (FFA) −42 −51 −15 3.35 *
Ant. Insula −33 12 6 3.91 ** 39 15 6 3.18 *
Orbitofrontal Cortex −36 36 −9 3.10 *

The center of the search volume was determined from the coordinates of other conditioning studies or by anatomical definition. The
volumetric extent of the search volume was determined by the approximated volume of the target structure (see Experimental Procedures).
*p < 0.05, **p < 0.01, ***p < 0.001 (small volume correction); n.s., nonsignificant.
Thus, it might be possible that subjects only learned o
ethe contingency of the face CS because it was always

the first CS to be systematically reinforced. Another po- e
etential confound was that the two contingency curves

were exact complements of each other: when the face t
rCS was reinforced, the house CS was not, and vice

versa. Thus, subjects could have simply learned the c
dface contingency and implicitly inferred the house con-

tingency. Third, it remained unclear whether the ob- I
tserved modulations in the amygdala and the FFA cru-

cially rest on the implicit nature of the conditioning (
f the task, we intended to generalize the findings of
xperiment 1 and rule out confounds and alternative
xplanations. In experiment 2, we sought to obtain an
xplicit and direct behavioral measure of the US predic-
ion. Consequently, subjects were asked to give binary
atings of US expectancy within the first 2 s of CS oc-
urrence. These altered instructions change the para-
igm from an implicit to an explicit conditioning design.

n order to control for inverse contingencies, we shifted
he phase of the two contingency curves by only 90°
Figure 4). Finally, we also inserted a short period of
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Figure 4. Predictions from the Rescorla-Wagner Model and Experi-
mental Design for Experiment 2

(A and B) Event train (stick function) and contingency threshold
function (sine waves) for face CS (blue) and house CS (red). Long
sticks indicate reinforced CSs (CS+); short sticks indicate nonrein-
forced CSs (CS–). The dashed line visualizes the fit of the event
train with the idealized contingency curve (see Experimental Pro-
cedures).
(C–F) Predictions derived from the Rescorla-Wagner model for the
face CS (blue) and the house CS (red) at two different learning rates
(� = 0.15 and 0.95).
prior to any systematic contingency changes in order
to distract subjects from cognitive search processes for
the correct contingency pattern. Importantly, we cre-
ated individual event trains for each subject. In addi-
tion, we counterbalanced the CS assignments across
subjects, i.e., for some subjects the face was the first
CS to be systematically reinforced, while for others it
was the house. Figure 4 shows an example event train
and derived RW prediction curves (see Experimental
Procedures for more detail). As in experiment 1, we ver-
ified that the US (thermode heat pain) elicited similar
activations in pain-related regions (see Supplemental
Results)
Behavioral Data
We tested our behavioral data in a statistical approach
analogous to the SCRs in experiment 1 by comparing
the expectancy ratings of those events in which the CS-
US contingency was “high” against those in which the
contingency was “low” (see Experimental Procedures
for analogous thresholds as in experiment 1). These
comparisons yielded highly significant learning effects
for both CSs at the group level (face: T16 = 4.284, p <
0.001; house: T16 = 4.355, p < 0.001; Figure 2B). At the
single-subject level, we identified successful learning
when the behavioral responses were positively corre-
lated with the reinforcement regime. This criterion re-
vealed that seven subjects learned the contingencies
of both CSs, five additional subjects learned only the
contingency of one CS, while five subjects did not learn
the contingency of either CS.

Based on these observations in the total sample of
17 subjects, we confined the analysis of the imaging
data to those 12 subjects who learned the association
of at least one CS and the US, but included only the
effect size images for the high and low � modulation for
which we found behavioral evidence of learning (see
Experimental Procedures).
Imaging Data
In order to directly compare these results with those of
experiment 1, we performed the same analysis of the
imaging data. As indicated by the exploratory sampling
of � parameter space (see Experimental Procedures),
we set the low � to 0.15 and the high � to 0.95. The
derived predictions at these learning rates were in-
cluded as parametric modulations in the first level
analysis and were later compared with differential con-
trasts in a repeated-measures ANOVA at the second
level.

For the comparison of low > high � regressors, we
found a significant effect in the right amygdala (Figure
5A). The corresponding Z and p values for a reduced
search volume are listed in Table 2 (part I). In contrast
to the findings from experiment 1, we did not observe
any effects in the nucleus accumbens, the ventral puta-
men, or the hippocampus for this comparison.

In the reverse contrast (high > low � regressor), we
found significant effects in bilateral FFA and the left
parahippocampal place area (PPA), an area known to
activate during the processing of spatial configuration,
in particular houses (Epstein et al., 1999) (Figures 5B
and 5C). Further regions that showed a similar effect
were found in the anterior insula and orbitofrontal cor-
tex (Table 2, part II).

Strikingly, the pattern of parameter estimates for the
high and low � regressors in amygdala and FFA very
closely corresponded to that of experiment 1 (see Fig-
ures 3 and 5 for visual comparison). We also plotted
the fitted prediction curve for better visualization of the
modulatory influences of the high and low � regressors
for this experiment (Figure S4). These curves also
strongly underline the close correspondence to the fit-
ted prediction curves from experiment 1. Thus, in ex-
periment 2, we demonstrate very precise replications
of our findings from experiment 1, despite significant
changes to the experimental procedures, especially the
cognitive task.

In both experiments, we investigated the representa-
tion of CS-US contingencies using Pavlovian fear con-
ditioning. In experiment 1, we chose an implicit variant
of the paradigm (Carter et al., 2003), while in experi-
ment 2, we adopted an explicit version requiring the
subjects to rate their US expectancy. Behaviorally, we
found evidence for a selective learning effect for face
CS in experiment 1 and for both CSs in experiment 2.
Using a paradigm involving dynamically changing rein-
forcement contingencies, we sought to determine the
interval of temporal integration of past experiences
necessary for generating reliable stimulus predictions
(Schultz and Dickinson, 2000). These varying contin-
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Figure 5. Neuroimaging Results from Experi-
ment 2

(A) Brain activations to low > high � regres-
sors in experiment 2. The SPM (threshold:
p < 0.01) shows a significant cluster in the
right amygdala. Bar graphs display the mean
parameter estimates for low and high � re-
gressors for both CSs. Note the close re-
semblance of these findings with those
shown in Figure 3 (labels as in Figure 3).
(B and C) Brain activations to high > low �

regressors. The SPMs (threshold: p < 0.01)
show significant clusters in bilateral FFA and
left PPA. Bar graphs display the mean
parameter estimates for low and high � re-
gressors for both CSs. These parameter esti-
mates also closely match those of experi-
ment 1. Flow/Fhigh, prediction regressor for
the face CS with low/high learning rate;
Hlow/Hhigh, prediction regressor for the
house CS with low/high learning rate.
gencies simulate changes in stimulus-stimulus associ- i
aations as they can occur in real-world settings. In line

with our hypotheses, we found significant effects of (
ptemporal integration in both experiments in two sets

of regions in which the BOLD signal covaried with the t
tprediction as derived from the Rescorla-Wagner model,

albeit on different time scales. The amygdala displayed a
a long temporal integration (low learning parameter �).
On the contrary, we found effects of short temporal in- L

Ttegration (high learning parameter �) in ventral visual
areas known for their specific involvement in process- d
ala plays a pivotal role in the formation of CS-US as-

Table 2. Statistical Results of Experiment 2 Corrected for Spherical Search Volumes at the Peak Voxel in MNI Space

I. Small > Large � Prediction Regressor

Left Hemisphere Right Hemisphere

Region x y z Z x y z Z

Amygdala 27 6 −30 3.29 *

II. Large > Small � Prediction Regressor

Left Hemisphere Right Hemisphere

Region x y z Z x y z Z

Fusiform Gyrus (FFA) −42 −57 −12 2.95 * 42 −51 −24 2.63 *
Parahippocampus (PPA) −21 −42 −12 2.99 *
Ant. Insula −33 15 3 2.59 *
Orbitofrontal Cortex −42 39 −9 2.82 (n.s.,

p = 0.058)

The center of the search volume was determined from the coordinates of other conditioning studies or by anatomical definition. The
volumetric extent of the search volume was determined by the approximated volume of the target structure (see Experimental Procedures).

*p < 0.05, **p < 0.01, ***p < 0.001 (small volume correction); n.s., nonsignif
ng the face and house CS (FFA and PPA). Although we
lso found long temporal integration in other areas

e.g., hippocampus and ventral striatum) and short tem-
oral integration in anterior insula and orbitofrontal cor-

ex in experiment 1, we decided to adopt a conserva-
ive approach and discuss only those areas that show
similar and robust effect in both experiments.

ong Temporal Integration in the Amygdala
here is a widely accepted consensus that the amyg-
icant.
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sociations in Pavlovian conditioning (Buchel et al.,
1998, 1999; LeDoux, 2000; Maren, 2001) The associa-
tion between CS and US is thought to be formed in the
basolateral amygdala comprising the lateral, basal, and
accessory basal subnuclei (Cardinal et al., 2002; Le-
Doux, 2000). Because reinforcement contingencies lie
at the heart of the association between CS and US, one
would expect amygdala activation to covary with these
contingencies. Although we found a nearly identical
pattern of prediction modulation in both experiments,
the pattern itself suggests a differential modulation for the
two CSs. The modulation for the face CS follows the pat-
tern of long temporal integration (low �) and is corrobo-
rated by a significant differential conditioning effect in
the SCR data of experiment 1. However, the modulatory
pattern for the house CS reflects short-term integration
in the reverse direction: the activation immediately de-
creases following a US presentation and increases
upon nonreinforced trials. This modulation can be char-
acterized as (inhibitory) active unlearning (Myers and
Davis, 2002). The animal literature has produced con-
siderable evidence for involvement of the amygdala in
inhibitory unlearning (for review see Falls and Davis,
1995). It is beyond the scope of these experiments to
disentangle the different modulatory influences on the
amygdala in an experimentally controlled fashion. How-
ever, we suggest that the observed pattern is not a
mere order effect or an effect of a specific sequence of
reinforcement because these confounds were carefully
controlled for through complete randomization in ex-
periment 2. Rather, we speculate that the reason for the
selective prediction modulation to the face CS might
lie in its biological relevance. Facial expressions are an
important social signal that allow an evaluation of the
benevolence or hostility of the social environment
(Glascher et al., 2004). Furthermore, is it a well-known
fact that the amygdala plays a crucial role in the pro-
cessing of facial expressions (for review see Adolphs,
2002), suggesting that faces are biologically more sa-
lient than houses. Early conditioning studies demon-
strated that biologically salient stimuli can be better
conditioned than nonsalient stimuli, even in the ab-
sence of awareness (Esteves et al., 1994; Ohman and
Soares, 1994). The observed difference in the predic-
tion modulation for both CSs suggests that the amyg-
dala closely reflects (or encodes) the long-term rein-
forcement contingencies for biologically salient stimuli,
while simultaneously suppressing the prediction en-
coding for a competing, but less salient CS (short-term
inhibitory unlearning). It would require further investiga-
tion to characterize this difference in prediction modu-
lation in more detail, e.g., with two face CSs with poten-
tially different facial expressions.

These differential findings seem to be supported by
the behavioral data of experiment 1 (implicit task), in
which subjects developed differential SCRs only for the
face CS. However, under an explicit cognitive task (ex-
periment 2), differential expectancy ratings were found
for both CSs. Given these findings, we suggest that the
acquisition of a Pavlovian conditioning under subtle
changes in reinforcement contingencies and under im-
plicit processing is facilitated when biologically salient
stimuli are employed as CSs (Ohman and Soares, 1994,
1998), whereas directing attention to US expectancies

(explicit task) attenuates this bias. Interestingly, the
amygdala seems to do the same computations regard-
less of the task (i.e., the parameter estimates of both
experiments closely correspond). Previous studies have
suggested that the amygdala may be critically involved
in the differential SCRs in experiment 1 (Cheng et al.,
2003; Phelps et al., 2001). While our findings are in line
with this interpretation, we also suggest that other brain
areas may be involved in the differential expectancy ef-
fects for both CSs in experiment 2.

The present study departs from earlier neuroimaging
studies of Pavlovian conditioning in two respects. With
the notable exception of the study by LaBar and col-
leagues (LaBar et al., 1998), previous imaging studies
have only acquired brain activation data from one
phase of the conditioning procedure (i.e., acquisition),
although most of them included a habituation and an
extinction phase in their experimental protocol. In addi-
tion, prior conditioning studies have always used sta-
ble, nonchanging reinforcement contingencies of either
100% (Cheng et al., 2003; Knight et al., 2004; LaBar et
al., 1998) or 50% partial reinforcement (Buchel et al.,
1998, 1999) during acquisition. Our study, however,
acquires neuroimaging data from different conditioning
phases multiple times in combination with dynamically
changing reinforcement contingencies. Although some
of these studies did not observe amygdala activation
(Knight et al., 1999, 2004), most studies report amyg-
dala activation related to altered CS processing during
acquisition (Buchel et al., 1998, 1999; LaBar et al., 1998;
Morris et al., 2001) and extinction (LaBar et al., 1998) or
to the expression of a conditioned skin conductance
response (Cheng et al., 2003), even when the US is
never presented (Phelps et al., 2001). Consistently,
these studies have reported a decrease of amygdala
activation in the course of the experiment, a pattern
that has been interpreted as novelty or uncertainty cod-
ing (Davis and Whalen, 2001; Zald, 2003). Stated dif-
ferently, in the context of formal learning theories, the
more predictable a CS becomes (given stable contin-
gencies), the less activation is observed in the amyg-
dala, suggesting an involvement of this structure in
encoding and processing contingency changes. The
findings of our two experiments support this notion: the
amygdala closely monitors contingency changes for
biologically salient stimuli (i.e., face CSs). Because we
wanted to systematically manipulate reinforcement
contingencies, our phases of stable contingencies were
necessarily short. Thus, the reason we did not observe
decreases in activation during phases of stable contin-
gencies might be that for the amygdala, which may en-
code contingency changes on a long-term basis, these
phases of “stable” contingencies were not long enough
to detect the stability.

It is interesting to note that the low learning rate was
slightly higher in experiment 2 (� = 0.15) than in experi-
ment 1 (� = 0.05). This could be an effect of the different
cognitive tasks in the two experiments. The learning
rate � is also influenced by the associability of CS and
US (Pearce and Bouton, 2001). In experiment 2, sub-
jects were asked to submit online expectancy ratings
of the US. The explicit nature of the task probably leads
to an increased allocation of processing resources,

which in turn could increase the associability of the CSs.
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Short-Term Anticipation of Reinforcement a
sin Perceptual Areas
tIn juxtaposition to the amygdala findings, we found cir-
ucumscribed activations in stimulus-specific regions of
athe ventral visual stream (FFA/PPA) in both experi-
oments. Strikingly, the patterns of parameter estimates

of both experiments also closely correspond to each
tother.
mHere, the pattern of the prediction modulation can be
tbest described as short temporal integration (high �)
ewith a minimal attenuation in phases of stable contin-
agencies. The modulation in these ventral stream areas
treflects the outcome history of only the last one or two
ntrials. This is accomplished by amplifying the influence
tof the prediction error on the update of the current pre-
Cdiction via a high learning rate. This short-term inte-
1gration of recent reinforcement trials could provide the
obasis for an anticipatory signal that allocates more per-
iceptual resources to ventral stream areas in order to
oprocess learned, biologically salient stimuli in more
tdetail.
dNeurons in the FFA have been reported to be modu-
2lated by attentional factors (Pessoa et al., 2002; Vuilleu-
cmier et al., 2001) and Pavlovian conditioning (Morris et
�al., 2001). The latter study reported learning-related sig-
fnal increases in this area over time. Thus, during sus-
stained aversive reinforcement of a face stimulus, the
bperceptual processing in the FFA is increased. Our pat-
Ctern of prediction modulation in the FFA and PPA sup-
aports and extends these findings because it demon-
tstrates the processing dynamics in situations of changing
tcontingencies: only during phases of reinforcement is
tthe activation elevated in these areas. Furthermore, our
lresults suggest that the modulation of ventral stream
rareas takes place on a short time scale.

p
Formal Learning Theories in Neuroimaging

t
The application of formal learning theories that rest on

p
prediction error as the reinforcement signal (Vogel et m
al., 2004) has been very successful in modeling behav- f
ioral (Miller et al., 1995) and neuronal responses in ap- r
petitive learning experiments (Schultz et al., 1997; t
Schultz and Dickinson, 2000). Within this framework, R
the neuronal coding of the (short-term) prediction error t
in appetitive learning has received much research at- b
tention (Schultz and Dickinson, 2000), and correspond- o
ing neuronal ensembles have been repeatedly located r
in the ventral tegmental area with projections to the m
ventral striatum in single-cell recordings in monkeys (
(Fiorillo et al., 2003; Schultz et al., 1997). Work akin to m
this using functional neuroimaging in humans reports e
activations localized in the ventral putamen that corre- f
late with the prediction error (McClure et al., 2003;
O’Doherty et al., 2003, 2004; Seymour et al., 2004). t

While these studies greatly contribute to the identifi- d
cation of the neural correlates of prediction error, the v
focus of our investigation lies on the structures encod- s
ing the actual predictions. To our knowledge, only one e
other imaging study also tried to localize the anatomi- d
cal structures encoding the stimulus predictions. In an t
elegant second-order aversive conditioning study em- w
ploying a temporal differences learning model, Sey-

smour and colleagues (Seymour et al., 2004) reported
ctivation for the predictions in the ACC, anterior in-
ula, and midcingulate cortex. These activations are in
he vicinity of the foci we reported in experiment 1 (Fig-
re S2, Table 1). Furthermore, our findings help to char-
cterize the observed activation with different amounts
f temporal integration.
The distinction between prediction error and predic-

ions in formal learning theories is essential, as the for-
er can be seen as the pacemaker of learning, whereas

he latter actually computes and encodes the values of
xpected outcomes (Montague et al., 2004). However,
lthough both are distinct computational concepts,
hey are also closely linked. Single-cell recordings and
euroimaging studies have identified the ventral stria-
um as the “seat” of these computational entities (Mc-
lure et al., 2003; O’Doherty et al., 2003; Schultz et al.,
997; Seymour et al., 2004). However, the delineation
f the region with respect to predictions and their errors

s far from complete. The nucleus accumbens is not
nly intimately connected to reward processing (Mon-
ague et al., 2004), but is also differentially activated
uring aversive Pavlovian conditioning (Jensen et al.,
003). Our finding of covariation of activity in the nu-
leus accumbens with slowly changing predictions (low
) in experiment 1 can be seen as in line with these
indings. Interestingly, however, we also observed the
ame covariation in the ventral putamen, which has
een previously associated with prediction error (Mc-
lure et al., 2003; O’Doherty et al., 2003; Seymour et
l., 2004). We do not have a strong opinion on whether
he ventral putamen computes both the predictions and
he error. It is, however, possible that these computa-
ions are accomplished by distinct neuronal subpopu-
ations located in the same brain area which are not
esolvable with fMRI.

All of the aforementioned studies employed the Tem-
oral Difference (TD) model, a real-time expansion of
he trial-based Rescorla-Wagner model used in the
resent study. Trial-based learning models like the RW
odel compute a single prediction and prediction error

or each trial, while real-time models like the TD algo-
ithm resolve predictions for each time point within a
rial. We chose to model our data with the trial-based
W model because the main focus of the study lies in

he different intervals of temporal integration in distinct
rain regions rather than in resolving the time course
f the activation during CS processing. Additionally, the
ate of image acquisition in BOLD fMRI only allows for
odeling a few time points in a TD model effectively

McClure et al., 2003; O’Doherty et al., 2003, 2004; Sey-
our et al., 2004). In fact, the predictions of both mod-

ls converge with fewer time points modeled in a TD
ramework.

In summary, we found evidence for long temporal in-
egration of the past learning experiences in the amyg-
ala and short temporal integration in stimulus-specific
entral stream areas (FFA/PPA) that reflects the in-
tantaneous reinforcement expectancy and selectively
nhances perceptual processing. Crucially, in order to
etect the modulatory influence of reinforcement con-
ingencies on the BOLD signal, we employed a design
ith varying contingencies.
The parallelism and yet regional distinction of both

low and fast learning-related changes is the potential
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neural correlate of the computational solution to two
tasks that a behaving organism has to solve in order to
be successful in evolutionary survival. Areas that en-
code the short-term reinforcement history enhance
their perceptual processing and propagate an immedi-
ate anticipatory signal of upcoming outcomes (e.g.,
threats), which helps to initiate potentially defensive
behavioral reactions. On the other hand, brain regions
that integrate over a long period of the past learning
history approximate the expected long-term average
outcome (i.e., values) necessary for strategic behavior.
Balancing the behavioral consequences of these two
necessary computational goals could enhance the
chances of evolutionary survival and procreation. Our
findings further implicate that long-term changes in the
acquired value are also encoded, thus allowing for the
dynamic adaptation of goals.

Experimental Procedures

Conditioning Procedure
Experiment 1
We chose an implicit Pavlovian conditioning procedure (Carter et
al., 2003) to investigate contingency related changes in brain acti-
vation. Subjects performed a simple working memory one-back
task in which they had to monitor a stream of letters (presented for
1 s with a stimulus onset asynchrony [SOA] of 2 s) and respond
with a button press if the same letter was presented twice in a row.
One-back targets always appeared in the pause between the US
and the following CS approximately every 20–30 s. In the mean-
time, one of the CSs was presented in the background for 6 s. We
chose a jittered SOA of 12 ± 2 s for the CSs. A neutral facial expres-
sion drawn from the Ekman Series of Facial Affect (Ekman and Frie-
sen, 1976) and a picture of a house were used as our two CSs. The
laser pain stimulus (US), which had a duration of only 1 ms, coin-
cided with the offset of the CS, thus rendering our design as an
implicit delay conditioning paradigm.
Experiment 2
In order to obtain stronger behavioral data, we chose an explicit
conditioning procedure that renders a direct measure of stimulus
prediction. Subjects were asked to give a binary rating of US ex-
pectancy via a button press within the first 2 s of the presentation
of each CS. For CSs, we used the same visual stimuli as in experi-
ment 1 and presented them also for 6 s (jittered SOA of 12 ± 2 s).
However, we chose a heat pain stimulus delivered via a thermode
attached to the inside of the subjects’ left forearm as a more effec-
tive US.

Contingency Variation
In order to demonstrate covariation between brain activation in
specific regions and constantly updated stimulus prediction, we
manipulated CS-US contingencies by increasing and decreasing
the probability of US occurrence in a systematic way. Thus, in a
first step we created a pseudorandom CS event train with the re-
striction that each CS type (face or house) could appear only on
two successive trials.

The dynamically increasing and decreasing contingencies were
reflected in a low-frequency sine wave (1.75 cycles) for each CS
type that spanned across all trials of the experiment (see blue and
red curves in Figures 1A and 1B [experiment 1] and Figures 4A and
4B [experiment 2]). In experiment 1, the phase of the two sine
waves was shifted against each other by 180°, while in experiment
2, the phase shift was 90°. In addition, we added a 50% partial
reinforcement period prior to the systematic contingency variation
in experiment 2 in order to alleviate cognitive search processes for
the reinforcement schedule. The aforementioned sines then served
as threshold functions describing the probability of reinforcement
at each trial. To apply this continuous contingency sine wave to the
discrete event train, we drew a random number in the amplitude
range of the sine wave for each trial. If that random number fell
below the threshold function (i.e., within the gray area in Figures
1A and 1B), then the trial was assigned to be reinforced CS (CS+);
if the random number fell above the threshold function it was as-
signed to function as a nonreinforced CS (CS–). This resulted in
experimental phases in which the face CS was more consistently
reinforced, while the house CS remained nonreinforced and vice
versa. We carefully controlled that each CS type (face or house)
was followed by an equal number of USs (laser or thermode pain)
during the entire experiment. The actual event train for experiment
1 is indicated in Figure 1. Note that there was no abrupt (binary)
change between CS+ and CS– phases as occurs when switching
from acquisition to extinction; rather, a transitional phase in which
both CS+ and CS– trials conforming to the abovementioned selec-
tion scheme bridged the two phases of repeated CS+ or CS– trials.

While we used the same event train and CS assignment (blue,
face; red, house) in experiment 1, this was changed in experiment
2: computer-generated event trains for each subject were similar
but not identical, and the CS assignment was counterbalanced
across subjects. Figures 4A and 4B represent an example event
train from one of the subjects. In order to evaluate how close each
individual event train matched the idealized contingency sine
waves, we smoothed the event train with a five-trial full-width-at-
half-maximum (FWHM) Gaussian filter (Figures 4A and 4B, dashed
lines) and calculated the sum of squares (SSQ) between this
smoothed event train and the contingency function. We chose only
those event trains that rendered a SSQ < 1.5 for each of the CSs.

Rescorla-Wagner Model
We chose to model our data with the trial-based Rescorla-Wagner
model because we were primarily interested in the effects of dif-
ferent learning rates expressed in the model parameter �. Based
on the actual event train in Figures 1 and 4, the RW model allows
the estimation of constantly updated outcome predictions that can
be subsequently used to model the data. According to the RW
model, the predicted outcome Vt is calculated with the following
equations:

Vt = wt−1 × ut

and

wt = wt−1 + e(Rt− Vt) × ut

where Vt indicates the predicted outcome of trial t, ut indicates the
CS type at trial t (face or house) and can be either 1 or 0 depending
if the particular CS type is presented on trial t, Rt indicates the
actual outcome of trial t, wt indicates the change in prediction at
trial t due to the prediction error at trial t (Rt – Vt), and � indicates
the learning parameter that controls the influence of the prediction
error in the update of the prediction (Dayan and Abbott, 2001).

We sought to determine the optimal learning parameter of a par-
ticular brain region. This can be accomplished by nonlinear optimi-
zation or by densely sampling the parameter space of �. We chose
the latter approach because it is more feasible within the GLM
framework as employed by SPM2. Thus, we conducted analyses
for a range of � (0 to 1 in steps of 0.05) and identified the � for
which the mean effect size (across subjects, one-sample t test) was
maximal. This revealed that the maximal effect sizes for activated
voxels were reached at either very low (� = 0.05) or very high (� =
0.95) learning rates in experiment 1. Consequently, we used these
two learning rates for further testing (see below). For experiment 2,
these maximal effect sizes were reached at � = 0.15 and 0.95. The
predicted outcomes for each CS type (face, blue; house, red) for
low and high learning parameters are shown in Figures 1 and 4
(C-F) for both experiments.

Experimental Procedure
Experiment 1
Subjects were instructed that they would participate in a working
memory task in which they were distracted either by visual stimuli
appearing in the background or sometimes by painful stimuli ap-
plied to the top of their left hand. It was explained to them that the
goal of the study was to monitor their brain activations during the
task and that they should therefore pay close attention to the work-
ing memory task. Subjects completed the fMRI session in 19 min.
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After scanning, subjects were confronted with a postexperimen- S
Ital questionnaire testing for their conscious knowledge of the stim-

ulus contingencies, first under free and then under cued recall con- c
mditions (see Supplemental Experimental Procedures for more

details). h
sExperiment 2

Subjects were instructed that they would participate in an experi- o
ument that investigates the effects of expectancies on subsequent

pain perception and the related brain activation. While it was t
tstressed that they should provide expectancy ratings for every trial,

it was not mentioned to them that they were part of a learning/ c
pconditioning study. Subjects completed the fMRI session in 24 min.

Subjects
S

In experiment 1, we scanned 15 right-handed male subjects (mean
D

age: 25.3 ± 2.8 SD). One subject was excluded from the analysis
l

due to a misunderstanding of task instructions. In experiment 2,
t

we scanned 17 subjects (8 males, mean age: 24.9 ± 2.5 SD). All
t

subjects were free of neurological or psychiatric diseases, had nor-
h

mal or corrected-to-normal vision, and signed a consent statement
a

that was approved by the local ethics committee.

v
Data Acquisition h
For skin conductance recordings in experiment 1, we used Ag/AgCl 1
electrodes attached at the hypothenar site of the subject’s left n
palm. Both electrodes were placed on the same dermatome (C8) in t
order to control for potential recording differences between derma- f
tomes. The signal was amplified using a CED 2502 skin conduc- C
tance amplifier and then digitized at 100 Hz on a CED Micro1401 p
mkII (Cambridge, UK) physiological recording unit. r

Functional imaging in both experiments was performed on a 3.0T c
Siemens Trio scanner (Erlangen, Germany). 42 transversal slices of a
echo-planar (EPI) T2* weighted images were acquired in each vol- p
ume with a slice thickness of 2 mm and 1 mm gap (TR = 2410 ms, h
TE = 25 ms, flip angle 80°, FoV 210 mm2, matrix 64 × 64). Experi-
ment 1 was completed in a single session with 472 volumes ac- s
quired in 19 min. Durations of experiment 2 varied between 24.7 p
and 25.5 min (615 to 636 scans) due to the individual event trains s
and jittered SOAs. t

t
Data Processing f
SCR data of experiment 1 were resampled to 10 Hz, low-pass fil- a
tered (3 s cut-off), and mean corrected. We then calculated the a
second interval response (SIR) by subtracting the mean of 3 s s
prestimulus baseline from the maximum SC deflection of the sec- d
ond half of the CS (3 s window). Previous studies have reported p
that the SIR is affected by contingency variations in the course of e
learning experiments (Knight et al., 2003; Wolter and Lachnit, 1993).

Image processing and statistical analyses of both experiments w
were carried out using SPM2. Prior to image processing, we dis- h
carded the first four images to alleviate the scan equilibration ef- t
fect. All volumes were realigned to the first volume, spatially nor- t
malized to a standard EPI template (Friston et al., 1995) using 3rd c
degree B-spline interpolation, and finally smoothed with an iso- o
tropic 10 mm full-width-at-half-maximum Gaussian filter to account F
for anatomical differences between subjects and to allow for valid 0
statistical inference at the group level.

c
tStatistical Analysis of Skin Conductance Data—Experiment 1

The demonstration of differential conditioning (CS+ versus CS–) af- i
dter the acquisition phase is a widely accepted index for learning in

a Pavlovian conditioning experiment (Knight et al., 2003; Ohman M
cand Soares, 1994, 1998). However, in a design with varying contin-

gencies, choosing the appropriate stimuli for the comparison is d
cmore difficult. Thus, we compared the SIRs of those SCRs in which

CS-US contingency was high against those SIRs in which the CS- a
bUS contingency was low. We defined the thresholds for “high” and

“low” contingencies based on the range of outcome predictions a
t(� = 0.05) derived by the RW model (Figures 1A and 1B) and se-

lected those responses as high contingency CSs whose prediction (
tvalue was above the 75th percentile of the range. Similarly, those

responses whose prediction value fell below the 25th percentile t
twere assigned to the low contingency class.
tatistical Analysis of Behavioral Data—Experiment 2
n order to closely match the SCR analysis of experiment 1, we
hose a similar group approach for the behavioral data of experi-
ent 2. Thus, we compared the expectancy ratings of trials with

igh CS-US contingency with those of low contingency using the
ame cut-off thresholds as in experiment 1. Thresholds were based
n the outcome prediction at � = 0.15 to match the learning rate
sed in the analysis of the imaging data. However, in the attempt
o demonstrate the behavioral relevance of the activations found in
he imaging analysis, we selected only those subjects who showed
lear evidence of learning (i.e., a positive correlation between ex-
ectancy ratings and the reinforcement regime).

tatistical Analysis of Imaging Data
ata analysis in both experiments was performed using a general

inear model as implemented in SPM2. We targeted our analysis to
he detection of brain regions that covary with the outcome predic-
ion of different learning rates �. Hence, we included the optimal
igh and low � RW predictions (as determined from our exploratory
nalysis above) as parametric modulations in the design matrix.
Design matrices at the single-subject level were created by con-

olving the stimulus function (i.e., onset of each CS type [face/
ouse], each US [laser or thermode pain], and only for experiment
each target in the one-back WM task) with a synthetic hemody-

amic response function (HRF) that models the BOLD effect (Fris-
on et al., 1998). We then entered the predictions of the RW model
or a low and a high � (the blue and red curves in Figures 1 and 4,
-F) as parametric modulations for each CS type separately. These
arametric modulations were also convolved with the HRF. These
egressors model BOLD signal changes that covary with the out-
ome predictions derived from the RW model at a particular �. In
ddition, we included the rigid-body scan to scan movement
arameters from the realignment stage that model the subject’s
ead movement during the experiment.
Subsequently, we raised six first level effect size images of each

ubject to a repeated-measures ANOVA at the second level for ex-
eriment 1. These images were main effects for each CS type (pre-
entation of each CS) and parametric modulators for the low and
he high learning rate for each CS type. In experiment 2, we raised
he same three effect size images of those CSs to the second level,
or which subjects demonstrated a behavioral learning effect (see
bove). Seven subjects learned both CSs (face and house), two
dditional subjects learned only the face CS, and three additional
ubjects learned only the house CS. Thus, the analysis comprised
ata from 12 subjects. The analyses in both experiments were ap-
ropriately corrected for potential nonspherical distribution of the
rror term.
In order to show regions that exhibit long temporal integration,
e then created the differential t contrasts that compared low >
igh � regressors. Similarly, we also created the differential t con-
rast of high > low � regressors to detect those regions of short
emporal integration. Our statistical threshold was set at p < 0.05,
orrected for multiple comparisons using false discovery rate (Gen-
vese et al., 2002). For displaying purposes in Figure 3 and 5 and
igures S1 and S2, the statistical maps were thresholded at p <
.01.
For regions with apriori hypotheses, we applied reduced spheri-

al search volumes that approximated the volumetric extent of the
arget area centered on coordinates obtained from other condition-
ng studies or by anatomical definition. The activation in the amyg-
ala was corrected with a standardized anatomical mask (Tzourio-
azoyer et al., 2002). The activations in the FFA and PPA were

orrected for a spherical volume of 10 mm. Sphere centers were
etermined by the face > house contrast and the house > face
ontrast, respectively (see Supplemental Experimental Procedures
nd Table S1). The hippocampus, ventral striatum (nucleus accum-
ens), anterior insula, and orbitofrontal cortex were corrected for
n 8 mm spherical search volume centered on coordinates ob-
ained from Ploghaus et al. (2000), Jensen et al. (2003), Porro et al.
2002), and by anatomical definition, respectively. Activation within
he red nucleus was corrected with a 6 mm spherical volume cen-
ered on coordinates obtain from Buchel et al. (1998). The activa-
ion in cingulate and somatosensory cortices was corrected for a
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spherical volume of 10 mm radius. Centers were obtained by locat-
ing the tip of the genu of the corpus callosum for the perigenual
ACC and the somatosensory cortex opposite the hand knob in the
motor cortex (Pizella et al., 1999; Yousry et al., 1997).

Supplemental Data
The Supplemental Data for this article can be found online at http://
www.neuron.org/cgi/content/full/47/2/295/DC1/.
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